Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667675PMC
http://dx.doi.org/10.3389/fnins.2019.00772DOI Listing

Publication Analysis

Top Keywords

vagus nerve
12
engineering aspects
12
avns
9
auricular vagus
8
current directions
4
directions auricular
4
nerve stimulation
4
engineering
4
stimulation engineering
4
engineering perspective
4

Similar Publications

The airway-brain axis: Connecting breath, brain, and behavior.

Cell Rep

September 2025

Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect

The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.

View Article and Find Full Text PDF

Vagus nerve stimulation as a novel therapeutic approach for musculoskeletal diseases.

Am J Med Sci

September 2025

Department of Medicine, Division of Rheumatology, University of Oklahoma College of Medicine, Oklahoma City, OK; Department of Medicine, VAMC, Oklahoma City, OK. Electronic address:

Vagus nerve stimulation (VNS) has gained significant attention as a therapy for various medical conditions due to its ability to modulate chronic diseases, pain, and inflammation. VNS delivered by an implanted device is FDA approved for severe epilepsy and refractory depression. VNS delivered with implantable devices or transcutaneous methods are now being studied in several musculoskeletal diseases including osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, and fibromyalgia.

View Article and Find Full Text PDF

Electroacupuncture alleviates intestinal ischemia-reperfusion-induced acute lung injury via the vagus-sympathetic nerve pathway.

Int Immunopharmacol

September 2025

Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China; Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:

Aims: Intestinal ischemia-reperfusion (II/R) injury predominantly causes acute lung injury (ALI), and in severe instances, acute respiratory distress syndrome, both associated with high mortality. Electroacupuncture (EA) excels in regulating autonomic nervous system balance and safeguarding organ function. This study delved into EA's impacts and mechanisms on II/R-induced ALI.

View Article and Find Full Text PDF

Cardioneuroablation for Refractory Vasovagal Storm Secondary to a Right Hilar Tumor.

JACC Case Rep

September 2025

Cardiology Department, CHU Clermont-Ferrand, Clermont-Ferrand, France; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France.

Background: Cardiac syncope due to sinus arrest may result from either a vasovagal cardioinhibitory mechanism or an intrinsic sinus node dysfunction.

Case Summary: A 67-year-old woman with a recently diagnosed right hilar mass presented with new-onset episodes of syncope associated with sinus arrest. Resting electrocardiogram was normal, and no electrolyte abnormalities were identified.

View Article and Find Full Text PDF

Glottic insufficiency results from impaired vocal fold contact, leading to a gap between the folds and manifesting as hoarseness and respiratory difficulties. Vocal folds injection is a commonly utilized therapeutic approach to rectify this gap by augmenting vocal folds volume; however, the optimal injectable material remains undetermined. Dedifferentiated fat cells (DFATs), derived from mature adipocytes, exhibit robust proliferative capacity and multipotency, establishing them as potential candidates for treating glottic insufficiency.

View Article and Find Full Text PDF