98%
921
2 minutes
20
Small titanium-oxo-alkoxide clusters, [TiO(OR)(OPR')], synthesised by the stoichiometric reaction of Ti(OPr), phosphinic acid and water, undergo a photo-redox transformation under long-wave UV light. The photo-reaction generates blue coloured, mixed-valence Ti(iii)/Ti(iv)-oxo clusters alongside acetone and isopropanol by-products. This reactivity indicates the ability for photoactivated charge separation to occur in even the smallest of Ti-oxo clusters. EPR and NMR spectroscopic studies support a photo-redox mechanism that occurs an intramolecular, two-electron pathway, directly relating to current doubling effects observed at TiO photoanodes in the presence of alcohols. The rate of photo-reaction is solvent dependent, with donor solvents supporting the formation of low coordinate Ti(iii) sites. The nature of the electronic transition is identified by DFT and TDDFT calculations as an oxygen to titanium charge transfer and it is possible to finetune the UV absorption onset observed by changing the phosphinate ligand. A two-electron photo-reduced cluster, [TiO(OPPh)], forms spontaneously from the photo-reaction and its structure is identified by X-ray crystallography with supporting DFT calculations. These indicate that [TiO(OPPh)] is high-spin and contains two ferromagnetically coupled electrons delocalised over the Ti core. [TiO(OPPh)] undergoes rapid oxidation in air in the solid-state and performs a remarkable single-crystal to single-crystal transformation, to form a stable cluster-superoxide salt.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640198 | PMC |
http://dx.doi.org/10.1039/c9sc01241a | DOI Listing |
JACS Au
February 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity.
View Article and Find Full Text PDFiScience
February 2025
College of Electronic Information & Key Lab of Information Materials of Sichuan Province, Southwest University for Nationalities, Chengdu 610041, China.
Selectively harnessing photo-induced carriers to control surface photo-redox reactions can enable currently limited specificity in photocatalytic applications. By using a new approach to switching between dominant electron and hole charge transfer on the surfaces of metal oxide nanocrystals, depending on the optimal carrier for specific application functionality in photocatalytic pollutant degradation, H production, CO reduction, and gas sensing. The approach is based on the surface redox properties of custom-designed p-n hetero-structured hybrid nanoparticles (NPs) containing copper oxide, and wide-gap metal oxide semiconductors (MOSs).
View Article and Find Full Text PDFChem Catal
November 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia en Química (UEQ) Avda. Fuente, Nueva s/n, 18071, Granada, Spain.
Reductive proton-coupled electron transfer (PCET) has important energetic implications in numerous synthetic and natural redox processes. The development of catalytic systems that can mediate such transformations has become an attractive target, especially when light is used to generate the reactive species towards solar-to-chemicals conversion. However, such approach becomes challenged by kinetic competition with H evolution.
View Article and Find Full Text PDFSci Total Environ
June 2024
Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States. Electronic address:
Mercury (Hg) is one of the toxic metals of global and environmental concern, with aquatic Hg cycling being central in determining the production of highly toxic methylmercury and the air-water Hg exchange influencing the long-range intercontinental atmospheric Hg transport. Both inorganic and organic forms of Hg can be bound by suspended particles, including inorganic minerals (in particular metal oxides/sulfides) and particulate organic matter. Photochemical transformation is a critical process in surface water, and the role of suspended particles in Hg redox photoreactions has increasingly emerged, albeit in limited studies in comparison to extensive studies on aqueous (homogeneous) photoreactions of Hg.
View Article and Find Full Text PDF