98%
921
2 minutes
20
Excessive activation of the NLRP3 inflammasome is a key component contributing to the pathogenesis of various inflammatory diseases. However, the molecular mechanisms underlying its activation and regulation remain poorly defined. The objective of this study was to explore the possible function of the K channel pore-forming subunit Kir6.1 in regulating NLRP3 inflammasome activation and insulin resistance. Here, we demonstrate that Kir6.1 depletion markedly activates the NLRP3 inflammasome, whereas enhanced Kir6.1 expression produces opposing effects both in mice in vivo and in primary cells in vitro. We also demonstrate that Kir6.1 controls insulin resistance by inhibiting NLRP3 inflammasome activation in mice. We further show that Kir6.1 physically associates with NLRP3 and thus inhibits the interactions between the NLRP3 inflammasome subunits. Our results reveal a previously unrecognized function of Kir6.1 as a negative regulator of the NLRP3 inflammasome and insulin resistance, which is mediated by virtue of its ability to inhibit NLRP3 inflammasome assembly. These data provide novel insights into the regulatory mechanism of NLRP3 inflammasome activation and suggest that Kir6.1 is a promising therapeutic target for inflammasome-mediated inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802643 | PMC |
http://dx.doi.org/10.1038/s12276-019-0291-6 | DOI Listing |
EMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFInt J Vitam Nutr Res
August 2025
Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.
Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Anesthesiology, Qianjiang Maternal and Child Health and Family Planning Service Centre, Qianjiang, Hubei, China.
Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.
View Article and Find Full Text PDF