98%
921
2 minutes
20
We use extended depolarized light scattering spectroscopy to study the dynamics of water in a lysozyme-trehalose aqueous solution over a broad time scale, from hundreds to fractions of picoseconds. We provide experimental evidence that the sugar, present in the ternary solution in quantity relevant for biopreservation, strongly modifies the solvation properties of the protein. By comparing aqueous solutions of lysozyme with and without trehalose, we show that the combined action of sugar and protein produces an exceptional dynamic slowdown of a fraction of water molecules around the protein, which become more than twice slower than in the absence of trehalose. We speculate that this ultraslow water may be caged between the sugar and protein surface, consistently with a water entrapment scenario. We also demonstrate that the dynamics of these water molecules gets slower and slower upon cooling. On the basis of these findings, we believe such ultraslow water close to the lysozyme is likely to be involved in the mechanism of bioprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5099588 | DOI Listing |
Food Chem X
August 2025
School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.
Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.
View Article and Find Full Text PDFGeohistorical events are among the most important factors determining population genetic structure. The Sea of Japan is an intriguing area because of its connection to neighboring seas via shallow straits (< 140 m deep) and the occurrence of deep-water anoxic events during glacial periods. Despite repeated anoxic events, species with low dispersal capabilities have been reported at depths deeper than the straits in both the Sea of Japan and the Pacific Ocean.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
September 2025
Medical College, Tibet University, Lhasa, Tibet, People's Republic of China.
Background: Tripterygium glycoside (TG) has been reported to have the effect of ameliorating Alzheimer's disease (AD)-like symptoms in mice model. However, the underlying mechanism is largely unknown. This study aimed to investigate the potential mechanism of TG against AD by integrating metabolomics, 16s rRNA sequencing, network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
Through molecular dynamics simulations of imidazolium-based ionic liquid-water mixtures, it was found that the trace water leads to an anomalous non-monotonic change in the diffusion coefficients of ionic liquid, characterized by an initial decrease followed by an increase. Hydrogen bond analysis revealed that this unusual trend is governed by the weighted hydrogen bond lifetime, reflecting the stability of the hydrogen-bond network, rather than simply the number or energy of hydrogen bonds.
View Article and Find Full Text PDFBiofouling
September 2025
Research Center for Metallurgy, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia.
Biofouling poses significant ecological and operational challenges in marine environments, particularly across Indonesia's diverse tropical waters. It increases hydrodynamic drag on vessels, leading to greater fuel consumption and elevated operational costs. This review synthesizes both recent and historical studies to examine the taxonomic and functional diversity of marine biofouling organisms in Indonesian waters.
View Article and Find Full Text PDF