Can community-based signalling behaviour in Saccharomyces cerevisiae be called quorum sensing? A critical review of the literature.

FEMS Yeast Res

School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville 3010, Australia.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quorum sensing is a well-described mechanism of intercellular signalling among bacteria, which involves cell-density-dependent chemical signal molecules. The concentration of these quorum-sensing molecules increases in proportion to cell density until a threshold value is exceeded, which triggers a community-wide response. In this review, we propose that intercellular signalling mechanisms can be associated with a corresponding ecological interaction type based on similarities between how the interaction affects the signal receiver and producer. Thus, we do not confine quorum sensing, a specific form of intercellular signalling, to only cooperative behaviours. Instead, we define it as cell-density-dependent responses that occur at a critical concentration of signal molecules and through a specific signalling pathway. For fungal species, the medically important yeast Candida albicans has a well-described quorum sensing system, while this system is not well described in Saccharomyces cerevisiae, which is involved in food and beverage fermentations. The more precise definition for quorum sensing proposed in this review is based on the studies suggesting that S. cerevisiae may undergo intercellular signalling through quorum sensing. Through this lens, we conclude that there is a lack of evidence to support a specific signalling mechanism and a critical signal concentration of these behaviours in S. cerevisiae, and, thus, these features require further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsyr/foz046DOI Listing

Publication Analysis

Top Keywords

quorum sensing
20
intercellular signalling
16
saccharomyces cerevisiae
8
signal molecules
8
specific signalling
8
quorum
6
signalling
6
sensing
5
community-based signalling
4
signalling behaviour
4

Similar Publications

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Thunb is endogenous to Southeast Asia and traditionally used for the treatment of bacterial and viral infections. Previous studies reported various pharmacological activities, including cytotoxic activity. The aim of this work was to identify phytoconstituents of the ethanolic extract of aerial parts using extensive 1D- and 2D-NMR analysis and HR-MS.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Uropathogenic Escherichia coli (UPEC) are among the first pathogens to colonise in catheter and non-catheter-associated urinary tract infections. However, these infections are often polymicrobial, resulting in multi-species infections that persist by forming biofilms. Living within these highly antimicrobial tolerant communities, bacteria can establish intra- and inter-specific interactions, including quorum sensing (QS)-mediated signalling mechanisms, which play a key role in biofilm establishment and maturation.

View Article and Find Full Text PDF