DIPK2A promotes STX17- and VAMP7-mediated autophagosome-lysosome fusion by binding to VAMP7B.

Autophagy

Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autophagosome and lysosome fusion is an important macroautophagy/autophagy process for cargo degradation, and SNARE proteins, including STX17, SNAP29, VAMP7 and VAMP8, are key players in this process. However, the manner in which this process is precisely regulated is poorly understood. Here, we show that VAMP7B, a SNARE domain-disrupted isoform of R-SNARE protein VAMP7, competes with SNARE domain functional isoform VAMP7A to bind to STX17 and inhibits autophagosome-lysosome fusion. Moreover, we show that DIPK2A, a late endosome- and lysosome-localized protein, binds to VAMP7B, which inhibits the interaction of VAMP7B with STX17 and enhances the binding of STX17 to VAMP7A, thus enhancing autophagosome-lysosome fusion. Furthermore, DIPK2A participates in autophagic degradation of mitochondria proteins and alleviates apoptosis. Thus, we reveal a new aspect of autophagosome-lysosome fusion in which different isoforms of VAMP7 compete with STX17 and their regulation by DIPK2A.: DIPK2A: divergent protein kinase domain 2A; EEA1: early endosome antigen 1; GOLGA2: golgin A2; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MT-CO2: mitochondrially encoded cytochrome c oxidase II; PARP1: poly(ADP-ribose) polymerase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RAB5A: RAB5A, member RAS oncogene family; RAB7A: RAB7A, member RAS oncogene family; REEP: receptor accessory protein; RTN4: reticulon 4; SNARE: SNAP receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TOMM20: translocase of outer mitochondrial membrane 20; VAMP7: vesicle associated membrane protein 7; VAMP8: vesicle associated membrane protein 8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144865PMC
http://dx.doi.org/10.1080/15548627.2019.1637199DOI Listing

Publication Analysis

Top Keywords

autophagosome-lysosome fusion
16
associated membrane
12
membrane protein
12
protein
9
fusion dipk2a
8
member ras
8
ras oncogene
8
oncogene family
8
vesicle associated
8
stx17
6

Similar Publications

Nano-enabled repurposing of Benproperine phosphate enhances pancreatic Cancer chemotherapy through lethal autophagy arrest and immune activation.

J Control Release

September 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou

Gemcitabine-based chemotherapy remains a cornerstone in pancreatic cancer treatment, yet its efficacy is hindered by poor bioavailability and adaptive resistance mechanisms, such as autophagy. In this study, we developed a hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) drug-repurposing nanoplatform (HA/ZIF-8@BPP/Gem) against pancreatic cancer through the co-delivery of the antitussive benproperine phosphate (BPP) and gemcitabine (Gem). Using cell lines, patient-derived xenograft models, and orthotopic tumor models, we demonstrated that BPP and Gem, rapidly released from the nanoplatform in the acidic tumor microenvironment, exhibited synergistic cytotoxicity without causing significant biochemical abnormalities or organ toxicity.

View Article and Find Full Text PDF

VAMP8 stabilization by DRAM1 enables autophagosome-lysosome fusion and promotes metastatic extravasation.

Autophagy

September 2025

National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei Uni

Autophagosome-lysosome fusion, essential for macroautophagy/autophagy completion, requires the STX17-SNAP29-VAMP8 SNARE complex. While VAMP8 is crucial, its regulatory mechanisms remain incompletely understood. Here, we identify DRAM1 (DNA damage regulated autophagy modulator 1) as a key interactor and stabilizer of VAMP8 on lysosomes.

View Article and Find Full Text PDF

Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization-spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways-including PI3K-AKT-mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades-undergo spatial and temporal disintegration.

View Article and Find Full Text PDF

Unlabelled: The coronavirus disease 2019 (COVID-19) pandemic highlighted the critical need for broad-spectrum antivirals with high resistance barriers. Here, we demonstrate that SB431542, a selective TGF-β receptor I (ALK5) inhibitor, exhibits potent antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through unprecedented multitargeted mechanisms. Through comprehensive , isothermal titration calorimetry, and analyses, we identified that SB431542 directly binds to SARS-CoV-2 ORF3a and disrupts its canonical function in inhibiting autophagosome-lysosome fusion.

View Article and Find Full Text PDF

Major histocompatibility complex class I (MHC-I)-mediated antigen presentation plays a pivotal role in anti-tumor immunity by enabling CD8 T cells to recognize and eliminate malignant cells. In melanoma, modulation of this pathway is critical for improving the efficacy of immunotherapies. Our study demonstrates that the natural compound Cepharanthine (CEP) exhibits notable antitumor activity by enhancing MHC-I-mediated antigen presentation.

View Article and Find Full Text PDF