98%
921
2 minutes
20
The biological mediation of mineral formation (biomineralization) is realized through diverse organic macromolecules that guide this process in a spatial and temporal manner. Although the role of these molecules in biomineralization is being gradually revealed, the molecular basis of their regulatory function is still poorly understood. In this study, the incorporation and distribution of the model intrinsically disordered starmaker-like (Stm-l) protein, which is active in fish otoliths biomineralization, within calcium carbonate crystals, is revealed. Stm-l promotes crystal nucleation and anisotropic tailoring of crystal morphology. Intracrystalline incorporation of Stm-l protein unexpectedly results in shrinkage (and not expansion, as commonly described in biomineral and bioinspired crystals) of the crystal lattice volume, which is described herein, for the first time, for bioinspired mineralization. A ring pattern was observed in crystals grown for 48 h; this was composed of a protein-enriched region flanked by protein-depleted regions. It can be explained as a result of the Ostwald-like ripening process and intrinsic properties of Stm-l, and bears some analogy to the daily growth layers of the otolith.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790713 | PMC |
http://dx.doi.org/10.1002/chem.201902157 | DOI Listing |
J Biomed Mater Res B Appl Biomater
September 2025
Abyss Ingredients, Caudan, France.
The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
The purpose of this article was to study the distribution of left ventricular hypertrophy (LVH) and cardiac valve calcification (CVC), relevant factors, and the relationship of LVH and CVC with survival in maintenance hemodialysis (MHD) patients. A total of 281 MHD patients were included in this retrospective and follow-up study. Echocardiography measurements were performed to evaluate the left ventricular structure and cardiac valve.
View Article and Find Full Text PDFDent Mater J
September 2025
Biomaterials Lab, Dentistry School, Federal University of Pará.
This study evaluated the chemical profile of toothpastes (TPs) and mouthrinses (MRs) and their effects on tooth enamel ultrastructure, and the viability of human dental pulp fibroblasts (hDPF). Four TPs and MRs containing different remineralizing agents (arginine, potassium nitrate, pro arginine, and stannous chloride) were analyzed for pH, titratable acidity (TA), and ion concentrations (Ca, K, Na). Enamel ultrastructure was evaluated using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
College of Materials Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:
Deep-sea hydrothermal vents are renowned for being among the most extreme environments on Earth. However, the mussel shells found in these vent sites demonstrate remarkable productivity, despite being subjected to high pressure as well as unusual levels of heavy metals, pH, temperature, CO, and sulphides. To comprehend how these mussels endure such extreme conditions, a systematic comparative study was conducted, focusing on the unique chemical composition, structural designs, and mechanical properties of hydrothermal vent mussels (Bathymodiolus aduloides) in comparison to shallow-water mussels (Mytilus edulis).
View Article and Find Full Text PDF