98%
921
2 minutes
20
Anode potential is a critical factor in the biodegradation of organics in bioelectrochemical systems (BESs), but research on these systems with complex recalcitrant co-substrates at set anode potentials is scarce. In this study, carbamazepine (CBZ) biodegradation in a BES was examined over a wide range of set anode potentials (-200 to +600 mV vs Ag/AgCl). Current generation and current densities were improved with the increase in positive anode potentials. However, at a negative potential (-200 mV), current generation was higher as compared to that for +000 and +200 mV. The highest CBZ degradation (84%) and TOC removal efficiency (70%) were achieved at +400 mV. At +600 mV, a decrease in CBZ degradation was observed, which can be attributed to a low number of active bacteria and a poor ability to adapt to high voltage. This study signified that BESs operated at optimum anode potentials could be used for enhancing the biodegradation of complex and recalcitrant contaminants in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.06.219 | DOI Listing |
Adv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Smart Materials and Future Energy, Fudan University, Shanghai, 200433, P. R. China.
All-solid-state batteries (ASSBs) utilizing solid electrolytes, which replace flammable liquid electrolytes, are regarded as one of the most promising prospective energy storage devices due to their inherent safety advantages and high energy density potential. As an emerging class of electrolytes for ASSBs, hydridoborates have attracted research interest because of their attractive material properties, including superior compatibility with metal anodes, low gravimetric density, and excellent solution processability. In this review, hydridoborate-based solid electrolytes (SEs) for all-solid-state batteries, including boranuide-based SEs, arachno-hydridoborate-based SEs, nido-hydridoborate-based SEs, closo-hydridoborate-based SEs, and conjuncto-hydridoborate-based SEs, are comprehensively summarized.
View Article and Find Full Text PDF