Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hypobromous acid (HOBr) is an important reactive oxygen species and has been recently found to be associated with a variety of diseases. However, owing to a lack of effective analytical tools, there is still limited understanding of its roles in living systems. Here, we present a new type of near-infrared fluorescent probe DCSN for HOBr detection. The designed probe exhibits high sensitivity with a low detection limit, excellent selectivity over other interfering species and low cytotoxicity. More interestingly, the fluorescence response behavior of the probe was different from the previous literatures due to the intramolecular charge transfer process. Moreover, we have successfully monitored HOBr in living cells by utilizing DCSN. This probe has potential to be used as a promising tool for better understanding the physiological functions of HOBr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117240 | DOI Listing |