98%
921
2 minutes
20
Modern genomic sequencing and bioinformatics approaches have detected numerous examples of DNA sequences derived from DNA and RNA virus genomes integrated into both vertebrate and insect genomes. Retroviruses encode RNA-dependent DNA polymerases (reverse transcriptases) and integrases that convert their RNA viral genomes into DNA proviruses and facilitate proviral DNA integration into the host genome. Surprisingly, DNA sequences derived from RNA viruses that do not encode these enzymes also occur in host genomes. Non-retroviral integrated RNA virus sequences (NIRVS) occur at relatively high frequency in the genomes of the arboviral vectors and , are not distributed randomly and possibly contribute to mosquito antiviral immunity, suggesting these mosquitoes could serve as a model system for unravelling the function of NIRVS. Here we address the following questions: What drives DNA synthesis from the genomes of non-retroviral RNA viruses? How does integration of virus cDNA into host DNA occur, and what is its biological function (if any)? We review current knowledge of viral integrations in insect genomes, hypothesize mechanisms of NIRVS formation and their potential impact on insect biology, particularly antiviral immunity, and suggest directions for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.034.013 | DOI Listing |
Heredity (Edinb)
September 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 10691, Sweden.
Parasitoid wasps are major causes of mortality of many species, making host immune defences a common target of adaptive evolution, though such targets outside model species are poorly understood. In this study, we used two tests of positive selection to compare across three closely related Galerucella leaf beetles that show substantial differences in their phenotypic response to the shared parasitoid wasp Asecodes parviclava, their main natural enemy. Using a codon-based test, which detects excess amino acid fixations per locus along each species' lineage, we found more evidence of positive selection on parasitoid-relevant immune genes in the species with the strongest immunocompetence (G.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Shanghai International Travel and Health Care Center, Shanghai, China.
Tachinid flies act as key biological vectors in elucidating plant-insect-microbe dynamic interactions. We report the mitochondrial genome sequence of from China. The mitogenome spans 14,775 base pairs in length, with a GC content of 21.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,
As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China. Electronic address:
The beet armyworm, Spodoptera exigua has developed resistance to the commonly used insecticide indoxacarb. Understanding fitness costs and resistance mechanisms to indoxacarb in S. exigua is essential for developing effective field resistance management strategies.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China. Electronic address:
The genus Alternaria comprises a wide range of ubiquitous plant pathogens that affect various host plants. Certain mycoviruses can induce changes in the biological characteristics and virulence of host fungi, offering potential for biocontrol in managing fungal plant diseases. Here, we identified a mycovirus with a high degree of homology to Alternaria arborescens victorivirus 1 (AaVV1), which was previously reported from Alternaria arborescens, in the QRH strain of the heterologous host Alternaria gomphrenae.
View Article and Find Full Text PDF