Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maize is one of the most important crops globally, and it shows remarkable genetic diversity. Knowledge of this diversity could help in crop improvement; however, gold-standard genomes have been elucidated only for modern temperate varieties. Here, we present a high-quality reference genome (contig N50 of 15.78 megabases) of the maize small-kernel inbred line, which is derived from a tropical landrace. Using haplotype maps derived from B73, Mo17 and SK, we identified 80,614 polymorphic structural variants across 521 diverse lines. Approximately 22% of these variants could not be detected by traditional single-nucleotide-polymorphism-based approaches, and some of them could affect gene expression and trait performance. To illustrate the utility of the diverse SK line, we used it to perform map-based cloning of a major effect quantitative trait locus controlling kernel weight-a key trait selected during maize improvement. The underlying candidate gene ZmBARELY ANY MERISTEM1d provides a target for increasing crop yields.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0427-6DOI Listing

Publication Analysis

Top Keywords

crop improvement
8
genome assembly
4
assembly tropical
4
maize
4
tropical maize
4
maize inbred
4
inbred insights
4
insights structural
4
structural variation
4
variation crop
4

Similar Publications

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

This study introduces a Drought Adaptation Index (DAI), derived from Best Linear Unbiased Prediction (BLUP), as a method to assess drought resilience in switchgrass ( L.). A panel of 404 genotypes was evaluated under drought-stressed (CV) and well-watered (UC) conditions over four consecutive years (2019-2022).

View Article and Find Full Text PDF

Motivation: Heavy usage of synthetic nitrogen fertilizers to satisfy the increasing demands for food has led to severe environmental impacts like decreasing crop yields and eutrophication. One promising alternative is using nitrogen-fixing microorganisms as biofertilizers, which use the nitrogenase enzyme. This could also be achieved by expressing a functional nitrogenase enzyme in the cells of the cereal crops.

View Article and Find Full Text PDF

Seeds are the cornerstone of agricultural crop production. They are sources of many valuable materials that can be used to convert bulk materials into nanoforms, thus supporting sustainability in nanomaterial (NM) synthesis and circular farming. The use of seeds in innovative nanotechnology is based on the theoretical knowledge about seed-NM interactions and NM toxicity on seeds.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF