The identification of a common different gene expression signature in patients with colorectal cancer.

Math Biosci Eng

Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui 323000, China.

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colorectal cancer (CRC) is one of the most common malignancies, giving rise to serious financial burden globally. This study was designed to explore the potential mechanisms implicated with CRC and identify some key biomarkers. CRC-associated gene expression dataset (GSE32323) was downloaded from GEO database. The differentially expressed genes (DEGs) were selected out based on the GEO2R tool. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to search the enriched pathways of these DEGs. Additionally, a protein-protein interaction (PPI) network was also constructed to visualize interactions between these DEGs. Quantitative Real-time PCR (qPCR) was further performed to valid the top5 up-regulated and top5 down-regulated genes in patients with CRC. Finally, the survival analysis of the top5 up-regulated and top5 down-regulated genes was conducted using GEPIA, aiming to clarify their potential effects on CRC. In this study, a total of 451 DEGs were captured (306 down-regulated genes and 145 up-regulated genes). Among these DEGs, the top5 up-regulated genes were DPEP1, KRT23, CLDN1, LGR5 and FOXQ1 while the top5 down-regulated genes were CLCA4, ZG16, SLC4A4, ADH1B and GCG. GO analysis revealed that these DEGs were mainly enriched in cell adhesion, cell proliferation, RNA polymerase II promoter and chemokine activity. KEGG analysis disclosed that the enriched pathway included mineral absorption, chemokine signaling pathway, transcriptional misregulation in cancer, pathways in cancer and PPAR signaling pathway. Survival analysis showed that the expression level of ZG16 may correlate with the prognosis of CRC patients. Furthermore, according to the connectivity degree of these DEGs, we selected out the top15 hub genes, namely MYC, CXCR1, TOP2A, CXCL12, SST, TIMP1, SPP1, PPBP, CDK1, THBS1, CXCL1, PYY, LPAR1, BMP2 and MMP3, which were expected to be promising therapeutic target in CRC. Collectively, our analysis unveiled potential biomarkers and candidate targets in CRC, which could be helpful to the diagnosis and treatment of CRC.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019145DOI Listing

Publication Analysis

Top Keywords

down-regulated genes
16
top5 up-regulated
12
top5 down-regulated
12
genes
9
gene expression
8
colorectal cancer
8
crc
8
genes degs
8
degs selected
8
up-regulated top5
8

Similar Publications

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

Objective: The key molecular events signifying the -induced gastric carcinogenesis process are largely unknown.

Methods: Bulk tissue-proteomics profiling were leveraged across multi-stage gastric lesions from Linqu ( = 166) and Beijing sets ( = 99) and single-cell transcriptomic profiling ( = 18) to decipher key molecular signatures of -related gastric lesion progression and gastric cancer (GC) development. The association of key proteins association with gastric lesion progression and GC development were prospectively studied building on follow-up of the Linqu set and UK Biobank ( = 48,529).

View Article and Find Full Text PDF

The purpose of this study was to investigate potential therapeutic targets for osteosarcoma (OS) and offer hints regarding genetic factors for OS treatment using a bioinformatics method. This study processed 3 OS datasets from the gene expression omnibus database using R software, screening for differentially expressed genes (DEGs). After enrichment analysis, based on expression quantitative trait loci data and the genome-wide association study data of OS, Mendelian randomization analysis was used to screen the genes closely related to OS disease, which intersect with DEGs to obtain co-expressed genes, validation datasets were employed to verify the results.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS), the leading stroke subtype (∼87%), arises from vascular occlusions, triggering brain necrosis through ischemia-reperfusion injury. Ferroptosis, an iron-driven cell death via Fe-mediated lipid peroxidation, is implicated in IS pathology. This study demonstrates that enoyl-coA hydrolase 1 (ECH1) may serve as a peripheral biomarker and therapeutic target for IS based on ferroptosis signaling.

View Article and Find Full Text PDF