Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: This study aimed to compare the cytocompatibility and angiogenic potential of 2 antibiotics (clindamycin [CLIN] and minocycline [MINO]) at distinct concentrations on dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs).

Methods: DPSCs and HUVECs were exposed to cell culture media modified with CLIN or MINO at concentrations ranging from 30 μg/mL-1000 μg/mL. Cell toxicity and proliferation were investigated using the lactate dehydrogenase and tetrazolium reduction assays, respectively. A capillarylike tube formation in vitro assay was conducted to determine the angiogenic potential associated with each antibiotic. Additionally, selected morphometric angiogenesis parameters were determined using dedicated software (WimTube; Onimagin Technologies SCA, Córdoba, Spain). All statistical analyses were performed using 1-way analysis of variance and the Tukey post hoc test (α= .05).

Results: The collected data showed that compared with the control (cell culture media, alpha-minimum essential medium Eagle) increasing the antibiotic concentration significantly decreased cell viability and proliferation of both DPSCs and HUVECs. In terms of angiogenic potential, when tested at 30 μg/mL and 50 μg/mL, CLIN significantly amplified tube formation when compared with MINO with angiogenesis parameters (ie, tube length and tube number) similar to the effect promoted by exogenous vascular endothelial growth factor (50 ng/mL).

Conclusions: CLIN was less cytotoxic when compared with MINO at higher concentrations. Of note, CLIN did not hinder the proangiogenic activity induced by vascular endothelial growth factor to the same extent as MINO, suggesting that the replacement of MINO by CLIN might translate into positive implications in the overall regenerative outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612592PMC
http://dx.doi.org/10.1016/j.joen.2019.04.007DOI Listing

Publication Analysis

Top Keywords

angiogenic potential
12
dpscs huvecs
8
cell culture
8
culture media
8
tube formation
8
angiogenesis parameters
8
compared mino
8
vascular endothelial
8
endothelial growth
8
growth factor
8

Similar Publications

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.

View Article and Find Full Text PDF

Breast cancer remains one of the leading causes of cancer-related morbidity and mortality among women worldwide, necessitating the development of novel therapeutic strategies. Phytoconstituents, naturally plant-derived bioactive compounds, have emerged as promising agents for breast cancer therapy due to their multifaceted mechanisms of action. This review examines the role of phytoconstituents in inducing apoptosis, inhibiting breast cancer cell proliferation, and suppressing metastasis.

View Article and Find Full Text PDF

Purpose: Myocardial infarction (MI), the leading cause of human mortality, is induced by a sudden interruption of blood supply. Among various stem cell types, endothelial progenitor cells (EPCs) are novel and valid cell sources for the restoration of vascularization in the ischemic tissue. The present study aimed to evaluate the regenerative properties of EPCs in rodent models of MI.

View Article and Find Full Text PDF

The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.

View Article and Find Full Text PDF