98%
921
2 minutes
20
A novel approach for harvesting Scenedesmus sp. microalgae from real wastewater by using adsorbents of magnetite-based nanoparticles (FeO NPs) was tested in this study for the first time for this microalgae. Using these NPs, the harvesting efficiency was even higher than 95%. The optimal conditions (0.14 gNPs/L, a short magnetic separation time of only 8 min and 27 min of contact time) were found using the response surface methodology. The best fitting of the adsorption equilibrium results was achieved by the Langmuir isotherm model, and the maximum adsorption capacity for Scenedesmus sp. reached 3.49 g dry cell weight (DCW)/g FeO NPs. Zeta potential measurements and the Dubinin-Radushkevich isotherm model analysis pointed out that the main adsorption mechanism between Scenedesmus sp. cells and FeO NPs was electrostatic interaction. Finally, FeO NPs were six times successfully reused by combining an alkaline treatment with an ultrasonication process, which implies microalgae lysis. The results herein obtained highlight the potential for magnetic separation of microalgae from wastewater, which is capable of reaching a high harvesting efficiency in a very short time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.05.023 | DOI Listing |
Antonie Van Leeuwenhoek
September 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
Synthetic dyes, such as methylene blue (MB), are increasingly becoming sources of water pollution and require better treatment strategies. This study describes an eco-friendly method for methylene blue degradation using green synthesized iron oxide nanoparticles form Ureibacillus chungkukjangi. This bacterium was isolated from clinical samples and identified using 16S rRNA gene amplification and sequenced using Sanger sequencing technology.
View Article and Find Full Text PDFEnviron Pollut
July 2025
School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China. Electronic address:
Soil contamination with toxic heavy metals such as cadmium (Cd) is becoming a serious global problem due to rapid industrial and agriculture expansion. Although nanoparticles (NPs) and plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity. A pot experiment was conducted under controlled conditions by using sand, mixed with different levels of Cd i.
View Article and Find Full Text PDFSci Rep
July 2025
Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
This study presents a microwave-solvothermal green synthesis of magnetite (Fe₃O₄) nanoparticles (NPs) using Hippophae rhamnoides berry extract and evaluates their selective anticancer activity. The NPs exhibited a crystalline structure (XRD peaks matching JCPDS Card No. 88-0315), superparamagnetic properties (VSM: saturation magnetization 40.
View Article and Find Full Text PDFPlant Physiol Biochem
July 2025
Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453000, China. Electronic address:
Soil salinization constitutes a major constraint to agricultural sustainability worldwide, with elevated sodium chloride levels inducing complex physiological disruptions that compromise crop productivity. As an innovative approach to abiotic stress mitigation, iron oxide nanoparticles (FeO-NPs) demonstrate unique advantages in enhancing iron bioavailability and modulating plant stress responses. This investigation systematically evaluated the efficacy of FeO-NPs in ameliorating NaCl-induced stress (150 mM) in peanut (Arachis hypogaea L.
View Article and Find Full Text PDFExp Parasitol
August 2025
Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, 732103, West Bengal, India. Electronic address:
The recurring global outbreaks of mosquito-borne diseases and the lack of vaccines, and preventive therapeutic approaches to combat diseases coupled with insecticide resistance, eventually emphasize the necessity of developing biological system-focused mosquito control strategies. In the present study, aqueous leaf extract from the Phyllanthus acidus L. plant was used to synthesize the metal nanoparticles (MNPs) such as silver, copper oxide, iron oxide, and zinc oxide, characterization has been carried out and their efficacies were also tested against the early 3rd instar larvae of the major mosquito vectors.
View Article and Find Full Text PDF