Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how an organism's phenotypic traits are conditioned by genetic and environmental variation is a central goal of biology. Root systems are one of the most important but poorly understood aspects of plants, largely due to the three-dimensional (3D), dynamic, and multiscale phenotyping challenge they pose. A critical gap in our knowledge is how root systems build in complexity from a single primary root to a network of thousands of roots that collectively compete for ephemeral, heterogeneous soil resources. We used time-lapse 3D imaging and mathematical modeling to assess root system architectures (RSAs) of two maize () inbred genotypes and their hybrid as they grew in complexity from a few to many roots. Genetically driven differences in root branching zone size and lateral branching densities along a single root, combined with differences in peak growth rate and the relative allocation of carbon resources to new versus existing roots, manifest as sharply distinct global RSAs over time. The 3D imaging of mature field-grown root crowns showed that several genetic differences in seedling architectures could persist throughout development and across environments. This approach connects individual and system-wide scales of root growth dynamics, which could eventually be used to predict genetic variation for complex RSAs and their functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713302PMC
http://dx.doi.org/10.1105/tpc.19.00015DOI Listing

Publication Analysis

Top Keywords

root systems
12
root
9
three-dimensional time-lapse
4
time-lapse analysis
4
analysis reveals
4
reveals multiscale
4
multiscale relationships
4
relationships maize
4
maize root
4
systems contrasting
4

Similar Publications

Optomechanical and electro-optomechanical systems have emerged as one of the most promising approaches for quantum microwave-to-optical transduction to interconnect distributed quantum modalities for scaling the quantum systems. These systems use suspended structures to increase mode overlap and mitigate loss to achieve high efficiency. However, the suspended design's poor heat dissipation under strong drive limits the ultimate efficiency.

View Article and Find Full Text PDF

Garlic is an important bulb vegetable which is used for both culinary and medical purposes worldwide. In vitro propagation is considered a promising technic for production and conservation of disease-free garlic seed. The efficiency of in vitro culture was studied for micropropagation of native Iranian garlic genotypes.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.

View Article and Find Full Text PDF