Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reconstituted high density lipoprotein (rHDL) is a biomimetic nanoparticle with plaque targeting and anti-atherosclerotic efficacy. In this work, we report on a strategy to rational design of lovastatin (LOV)-loaded spherical rHDL (LOV-s-rHDL) for efficient and safe anti-atherosclerotic therapy. Briefly, three LOV-s-rHDLs were formulated with LOV/s-rHDL at ratios of 8:1, 10:1, and 15:1 upon their respective median-effect values ( D). The combined inhibitory effect between LOV and s-rHDL of different LOV-s-rHDL formulations on DiI-labeled oxLDL internalization was systemically investigated in RAW 264.7 cells based on the median-effect principle. Median-effect analysis demonstrated that the optimized LOV-s-rHDL was formulated with a ratio of 10:1 ( D: D), in which LOV and s-rHDL carrier showed the best synergistic effect, presumably ascribed to their inhibitory effect on CD36 and SR-A expression according to the Western blot analysis. In vivo pharmacodynamics studies showed that the optimized LOV-s-rHDL displayed the most pronounced anti-atherosclerotic effect on decreasing plaque area and reducing the MMP level following an 8-week dosing regimen. In vivo atherosclerotic plaque targeting analysis revealed that s-rHDL had potent plaque targeting efficacy, probably owing to the interaction between apoA-I and scavenger receptor B-I. Furthermore, we observed that the optimized LOV-s-rHDL exhibited a favorable safety profile as evidenced by the results of a hemolysis assay, cell cytotoxicity study, and in vivo safety test. Collectively, the rational design of the biomimetic LOV-s-rHDL based on the median-effect analysis provides an efficient strategy to achieve a synergistic and safe anti-atherosclerotic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00445DOI Listing

Publication Analysis

Top Keywords

rational design
12
safe anti-atherosclerotic
12
anti-atherosclerotic therapy
12
plaque targeting
12
optimized lov-s-rhdl
12
reconstituted high
8
high density
8
density lipoprotein
8
efficient safe
8
lov s-rhdl
8

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Rational Hapten Design for the Immunochromatographic Assay of Yohimbine, an Emerging Adulterant in Food.

J Agric Food Chem

September 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.

Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF