Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effects of tropical cyclones (TCs) on dissolved oxygen (DO) in subsurface waters (20-200 m) over the Oxygen Minimum Zones (OMZs) in the Bay of Bengal (BoB) are examined based on Argo and satellite data. Five TCs (Hudhud, Five, Vardah, Maarutha and Mora) during 2013-2018 are considered. Analyses reveal three types of DO temporal variability caused by the storm-induced mixing and upwelling. The first type features temporal DO increases in subsurface waters (37-70 m) caused mainly by intense vertical mixing and downwelling. The second type features DO reductions in subsurface waters after the storms attributed to storm-induced upwelling. The third type features temporal DO increases at depths between 40 and 79 m and decreases at depths between 80 and 150 m due to the combined effect of strong vertical mixing and upwelling. These three types of DO responses can occur in different areas, depending on TC intensity, translational speed and Ekman pumping. The temporal DO variability is also influenced by the shallow oxycline (58.3 ± 16.7 m), mesoscale eddies and biochemical processes. Due to TC intensification, a pre-existing oceanic cyclonic eddy produced a large upwelling and induced a long time of DO decrease in the subsurface layer. This study suggests three different types of DO responses along the TC track in the OMZ, which is useful to evaluate the influence of TCs on the OMZ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.384DOI Listing

Publication Analysis

Top Keywords

subsurface waters
12
three types
12
type features
12
dissolved oxygen
8
tropical cyclones
8
bay bengal
8
based argo
8
argo satellite
8
temporal variability
8
mixing upwelling
8

Similar Publications

Spatial distributions of biogenic sulfur compounds and isoprene in the tropical western Pacific Ocean: Implications for air-sea fluxes and deep-ocean reservoirs.

Mar Environ Res

September 2025

Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,

Simultaneous measurements of dimethylsulfide (DMS) and isoprene in seawater and the overlying atmosphere were conducted in the tropical western Pacific Ocean during February-March 2017. Surface seawater exhibited a strong correlation between DMS and dimethylsulfoniopropionate (DMSP), with similar spatial distributions, whereas dimethylsulfoxide (DMSO) displayed an opposing trend. Latitudinal and vertical profiles of DMS, DMSP, and isoprene revealed their pronounced dependence on biological factors, particularly in subsurface layers.

View Article and Find Full Text PDF

Enhanced catalytic oxidative depolymerization of lignin to aromatic compounds by activated carbon-supported polyoxometalate-ionic liquid catalysts.

Int J Biol Macromol

September 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Material Science, Northwest University, Xi'an, Shaanxi 710127, China.

Lignin, a major component in renewable plant biomass, serves as a potential source of high-value aromatic chemicals. However, efficiently decomposing lignin while maintaining its aromaticity for fossil fuel substitution remains a significant challenge. This study synthesized a [VimAm]Br@POM@AC catalyst, composed of a Keggin-type polyoxometalate (POM) modified by ionic liquid ([VimAm]Br) and supported on activated carbon (AC).

View Article and Find Full Text PDF

Investigating chemical composition at the sea-air interface: A subsampling approach for marine surface microlayer analysis.

Sci Total Environ

September 2025

Faculty of Civil and Environmental Engineering, Technion, Israel. Electronic address:

The marine surface microlayer (SML) is distinct from the subsurface water by physical, chemical and biological properties. Being the interface, the SML regulates mass and energy transfer between the ocean and the overlying atmosphere. Given the wide surface area covered by oceans, even small change in flux may have a significant global impact.

View Article and Find Full Text PDF

Functional river restoration as a lever for adapting to climate change from an interdisciplinary emblematic showcase on the Upper Rhine.

J Environ Manage

September 2025

Laboratoire Image, Ville, Environnement (LIVE UMR 7362), Université de Strasbourg, CNRS, ENGEES, ZAEU LTER, 3 rue de l'Argonne, Strasbourg, 67083, France.

Many large rivers have been regulated for navigation improvement, hydro-electricity production, agricultural development and flood protection. River regulation alters both aquatic and riverine habitat dynamics as well as ecological functionalities and ecosystem services. This study aims to evaluate the impacts of river regulation performed along the Rhine as well as climate change to develop a process-based restoration strategy for the Rhinau-Taubergiessen area.

View Article and Find Full Text PDF

Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types-including four monocultures and two mixed-species stands-to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types.

View Article and Find Full Text PDF