Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil.

Environ Geochem Health

State Key Laboratory of Water Resources and Water Hydropower Engineering Science, Wuhan University, Hubei, 430072, People's Republic of China.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antibiotics and heavy metals have long-term potential toxicity to the environment, and their residuals in agricultural soils are receiving more and more attention. To evaluate the ecotoxicological effects of enrofloxacin and cadmium on soil enzymatic activities and microbial community structure, soil samples were exposed to individual and combined contaminants over 28 days. The results indicated that the toxic effects of enrofloxacin alone on soil enzymatic activities were relatively small and showed no concentration dependence. In contrast, significant inhibition of soil enzymatic activities was observed upon cadmium contamination by itself. Overall, the combination of two contaminants also has toxic effect on enzymatic activities; an antagonism between enrofloxacin and cadmium was observed. On 14 and 21 days, individual enrofloxacin and cadmium reduced average well color development (AWCD), Shannon, McIntosh, Simpson indices, and substrate utilization, except for Shannon, McIntosh, Simpson indices of the cadmium 0.4 mmol/kg treatment were higher than the control on 21 days. In general, combined treatments led to higher value of these microbial diversity indicators than those found under separate contamination, although there were some exceptions. With the increase in enrofloxacin concentration, the utilization of any carbon source by the microorganisms gradually decreased. In addition, the AWCD value and substrate utilization decreased as time increased. In the separate and combined contaminant treatments, the order of substrate utilization by soil microorganisms was aliphatics > amino acids > saccharides > metabolites. Thus, enrofloxacin and cadmium had a variable but generally negative influence on soil enzymatic activities and microbial community structure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-019-00307-5DOI Listing

Publication Analysis

Top Keywords

enzymatic activities
24
enrofloxacin cadmium
20
soil enzymatic
16
activities microbial
12
microbial community
12
community structure
12
substrate utilization
12
structure soil
8
effects enrofloxacin
8
shannon mcintosh
8

Similar Publications

The ability to complete DNA replication as replisomes converge has recently been shown to be a highly-regulated, multi-enzymatic process. Converging forks also are likely to generate unique supercoiled, tangled, or knotted substrates. These structures are typically resolved by one of the four topoisomerases encoded by Escherichia coli.

View Article and Find Full Text PDF

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF

Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.

View Article and Find Full Text PDF

This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.

View Article and Find Full Text PDF

Polymer particles, including synthetic polymers such as poly(methyl methacrylate) (PMMA) and poly(styrene-co-divinylbenzene) (P(S-co-DVB)) beads, have been widely used as enzymatic supports and drug carriers. In this sense, it is important to understand the stabilization or degradation of such polymer matrices under specific chemical and enzymatic media. For this reason, the present work aims to evaluate the current status and prospects of treatments of PMMA and P(S-co-DVB) particles intended for biotechnological and biomedical applications under basic, acidic, and enzymatic environments.

View Article and Find Full Text PDF