98%
921
2 minutes
20
Senescence is a tightly regulated developmental program coordinated by transcription factors. Identifying these transcription factors in crops will provide opportunities to tailor the senescence process to different environmental conditions and regulate the balance between yield and grain nutrient content. Here, we use ten time points of gene expression data along with gene network modeling to identify transcription factors regulating senescence in polyploid wheat (). We observe two main phases of transcriptional changes during senescence: early down-regulation of housekeeping functions and metabolic processes followed by up-regulation of transport and hormone-related genes. These two phases are largely conserved with Arabidopsis (), although the individual genes underlying these changes are often not orthologous. We have identified transcription factor families associated with these early and later waves of differential expression. Using gene regulatory network modeling, we identified candidate transcription factors that may control senescence. Using independent, publicly available datasets, we found that the most highly ranked candidate genes in the network were enriched for senescence-related functions compared with all genes in the network. We validated the function of one of these candidate transcription factors in senescence using wheat chemically induced mutants. This study lays the groundwork to understand the transcription factors that regulate senescence in polyploid wheat and exemplifies the integration of time-series data with publicly available expression atlases and networks to identify candidate regulatory genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752934 | PMC |
http://dx.doi.org/10.1104/pp.19.00380 | DOI Listing |
Cell Physiol Biochem
September 2025
Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China, E-Mail:
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
First Affiliated Hospital of Anhui University of Chinese Medicine.
Objectives: To investigate the mechanism of (QJZ) for ameliorating renal damage in MRL/lpr mice.
Methods: With 6 female C57BL/6 mice as the normal control group, 30 female MRL/lpr mice were randomized into model group, QJZ treatment groups at low, moderate and high doses, and prednisone treatment group (6). After 8 weeks of treatment, the mice were examined for 24-h urine protein, creatinine and albumin levels, serum levels of IgG, complement 3 (C3), C4, anti-dsDNA, interferon γ (IFN‑γ) and interleukin 17 (IL-17).
Biofactors
September 2025
Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Cancer is one of the major public health challenges worldwide, and the STAT3 signaling pathway is recognized as one of the most important signaling pathways in the progression of this disease. This pathway can increase the survival and proliferation of cancer cells and their resistance to treatment by regulating lipid and carbohydrate metabolism, apoptosis, and inflammatory processes. Therefore, STAT3 inhibition is considered an effective therapeutic approach in the fight against cancer.
View Article and Find Full Text PDF