Dex-Aco coating simultaneously increase the biocompatibility and transfection efficiency of cationic polymeric gene vectors.

J Control Release

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharma

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cationic polymeric vectors attracted plenty of attentions in gene therapy due to nonimmunogenicity, easy to synthesis and flexible properties. However, biocompatibility challenge such as nonspecific interactions with blood cells and serum proteins, may affect the delivery efficiency of cationic vectors; besides, inefficient endosomal escape causes low transfection efficiency. Herein, we synthesized an anionic coating polymer dextran-g-aconic anhydride (Dex-Aco, DA) through a simple esterification reaction, which can protect cationic polymer poly(cystamine-bis-acrylamide)-agmatine-histamine (PCAH, PC) constructed nanomedicine against interactions with blood cells and serum proteins, improving biocompatibility. Interestingly, DA coating significantly increased the transfection efficiency of cationic PC,not due to the increase of cellular uptake, nor functioning as a receptor ligand, but was associated to the change of endocytosis pathway. Finally, using programmed cell death protein 4 (PDCD4) as a functional gene, DA coating PC NPs showed improved therapeutic effect and biocompatibility on tumor bearing mice. We believe that this DA coating PC NPs provides a facile method to improve the performance of cationic polymer vectors in gene therapy and has great potential for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2019.04.035DOI Listing

Publication Analysis

Top Keywords

transfection efficiency
12
efficiency cationic
12
cationic polymeric
8
gene therapy
8
interactions blood
8
blood cells
8
cells serum
8
serum proteins
8
cationic polymer
8
coating nps
8

Similar Publications

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF

Polymer-based gene-drug co-delivery system effectively inhibits pathologic retinal neovascularization through dual anti-inflammatory and anti-neovascular actions.

Biomaterials

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Retinal neovascularization is one of the most prevalent fundus neovascular diseases, affecting vision and potentially leading to severe complications, such as retinal detachment or irreversible blindness. Current treatments primarily involve intravitreal injections (IVT) of anti-vascular endothelial growth factor (anti-VEGF) agents. However, such treatment often requires repeated injections, develop incomplete responses, and are associated with adverse effects.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) was a highly aggressive and metastatic subtype of breast cancer characterized by a poor prognosis and limited treatment options. Clarifying the underlying molecular mechanisms was of significant clinical importance. In this study, we We plotted Kaplan-Meier survival curves based on data from the Human Cancer Database and found that elevated CYPJ expression increased patient mortality risk and decreased survival rates.

View Article and Find Full Text PDF

Optimizing mucosal vaccination: Exploiting Lactobionic acid-modified chitosan for superior gene delivery systems.

Int J Biol Macromol

September 2025

CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a

The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.

View Article and Find Full Text PDF

Glucose sensors are critical analytical devices designed for precise and continuous monitoring of glucose concentrations, playing a pivotal role in healthcare, particularly in diabetes management. Here, we synthesis glucose oxidase (GOx)/Se hydrogel to detect the glucose, thereby generating measurable electrical signals. Further, the transfection of electronic signals rely on the poly(dopamine) (PDA) grid in hydrogel.

View Article and Find Full Text PDF