98%
921
2 minutes
20
The use of nanoparticles (NPs) in numerous products and their potential accumulation causes major concern for humans and the environment. Until now, the uptake of NPs in plant tissue was mostly shown under greenhouse conditions at high doses and short exposure periods. Here, we present results on the uptake of particulate silver (Ag) and cerium dioxide (CeO) in the tissues of Triticum aestivum, Brassica napus, and Hordeum vulgare, after exposure to sewage sludge treated with nano-Ag (NM300 K at 1.8 and 7.0 mg/kg sludge per dm soil) and nano-CeO (NM212 at 10 and 50 mg/kg sludge per dm soil). All plants were cultivated in a rural area near the German town Schmallenberg according to the common regional crop rotation on outdoor lysimeters. The highest concentrations measured were 86.4 mg/kg for Ag ( Hordeum vulgare) and 94 mg/kg for Ce ( Triticum sativum). Analysis of plant samples revealed the presence of Ag mainly in its ionic form. However, the occurrence of nano- and larger sized particles of Ag and CeO was observed as well. Quantitative shares of the particulate fraction of the total element concentration were estimated up to 22.4% for Ag and up to 85.1% for CeO. A high abundance of particle agglomerates in the phloem suggests upward transport of the nanoparticles to other plant parts. A small number of agglomerates in the xylem suggests a downward transport and subsequent accumulation in the root phloem. Exemplary investigations of Brassica napus root exposed to nano-CeO revealed no accumulation of the pristine material in the cell nucleus; however, CePO was found The presence of this substance points to a dissolution of the low soluble CeO in planta and subsequent precipitation. Furthermore, for the first time, mixed NP-salt agglomerates, composed of CaPO and KSO NPs, could be observed within Brassica napus root tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b07222 | DOI Listing |
J Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDFNew Phytol
September 2025
National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Life Sciences, Leshan Normal University, Leshan, Sichuan, China.
(Eukaryotic Transcription Factor 2/Dimerization Partner) refers to a class of protein complexes that play a pivotal role in the regulation of gene transcription in eukaryotes. In higher plants, transcription factors are of vital significance in mediating responses to environmental stresses. Based on differences in their conserved structural domains, they can be categorized into three subgroups: E2F, DP, and DEL (DP-E2F-like).
View Article and Find Full Text PDFPhysiol Plant
September 2025
College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China.
Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.
View Article and Find Full Text PDF