Design and application of a modular and scalable electrochemical flow microreactor.

J Flow Chem

Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands.

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemistry constitutes a mild, green and versatile activation method of organic molecules. Despite these innate advantages, its widespread use in organic chemistry has been hampered due to technical limitations, such as mass and heat transfer limitations which restraints the scalability of electrochemical methods. Herein, we describe an undivided-cell electrochemical flow reactor with a flexible reactor volume. This enables its use in two different modes, which are highly relevant for flow chemistry applications, including a serial (volume ranging from 88 μL/channel up to 704 μL) or a parallel mode (numbering-up). The electrochemical flow reactor was subsequently assessed in two synthetic transformations, which confirms its versatility and scale-up potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404740PMC
http://dx.doi.org/10.1007/s41981-018-0024-3DOI Listing

Publication Analysis

Top Keywords

electrochemical flow
12
flow reactor
8
design application
4
application modular
4
modular scalable
4
electrochemical
4
scalable electrochemical
4
flow
4
flow microreactor
4
microreactor electrochemistry
4

Similar Publications

Electrochemical grooving of tube inner walls with emphasis on feed strategy and multi-pass effects on material removal and groove geometry.

PLoS One

September 2025

Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Samsun University, Samsun, Turkiye.

Electrochemical (EC) grooving minimises tool wear and residual stress when machining hard-to-cut tube materials. This study examines how the number of passes and tool feed direction affect material removal rate (MRR) and removed area (RA) in Stellite 21 tubes. Two feed strategies were tested: Unidirectional Electrolyte Flow (UEF), where the tool moves entirely opposite to the electrolyte flow; and Hybrid Electrolyte Flow (HEF), where the tool first moves against and then with the flow direction.

View Article and Find Full Text PDF

The miniaturization of separation platforms marks a transformative shift in analytical science, merging microfabrication, automation, and intelligent data integration to meet rising demands for portability, sustainability, and precision. This review critically synthesizes recent technological advances reshaping the field-from microinjection and preconcentration modules to compact, high-sensitivity detection systems including ultraviolet-visible (UV/Vis), fluorescence (FL), electrochemical detection (ECD), and mass spectrometry (MS). The integration of microcontrollers, AI-enhanced calibration routines, and IoT-enabled feedback loops has led to the rise of self-regulating analytical devices capable of real-time decision-making and autonomous operation.

View Article and Find Full Text PDF

Synergistic t-to-π* Electron Transfer and Nanotube Engineering in Spinal Catalysts for Ultra-Efficient Chloride Evolution.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Facing the massive energy consumption of over 200 TWh y of chlor-alkali industry, developing high-activity and durable non-precious CER (chlorine evolution reaction) catalysts is urgently needed to address the high overpotentials and suppress the dissolution high-valance metal species. Herein, a carbon quantum dots functionalized trimetallic Fe/Co/Ni spinel oxide nanotube architecture (FCNO@CQDs) is constructed, featuring t-to-π* π-backbonding for dramatically enhanced CER activity and stability. The reverse electron flow from Co d-obritals to the vacant CQDs' π* orbitals can upshift the d-band center for enhanced intermediate adsorption, while stabilizing high-valent Co centers via increased bond order.

View Article and Find Full Text PDF

The development of flexible gas sensors is of growing interest in wearable electronics. However, developing a gas sensor with low operating temperature, high sensitivity, and rapid response remains a huge challenge. Herein, we first develop a polyacrylamide-sodium acrylate-sodium citrate (PAM-Na-SC) hydrogel electrolyte, and design a hydrogel-based nitrogen dioxide (NO) gas sensor enabled by zinc-air batteries (ZABs).

View Article and Find Full Text PDF

Chiral crystals with well-defined handedness in atomic arrangements exhibit properties such as spin selectivity, asymmetric magnetoresistance, and skyrmions. Although similar geometry-induced phenomena in chiral organic molecule-based systems were observed, synthesizing uniform inorganic nanostructures with desired chirality using a scalable method remains challenging. We electrochemically synthesized chiral ferromagnetic cobalt-iron nanohelices from nanoparticles in anodized aluminum oxide templates.

View Article and Find Full Text PDF