98%
921
2 minutes
20
In this study, a novel additive from metallurgical dust(MD)was applied to reduce particulate matter (PM) emissions and heavy metals pollutions during coal combustion. PM samples were collected and divided into 13 stages from 0.03 μm to 10 μm. Results showed that the irregular morphology of fine particles with equal to/less than 2.5 μm (PM), fine particles with equal to/less than 4 μm (PM) and fine particles with equal to/less than10 μm (PM) gradually became dense with increasing of MD content. The PM concentration with 10% MD dosage was about 3 times higher than that of raw coal. Zn, Ti, Cu and Cr were the most abundant elements in all particulate matters (PMs), meanwhile, heavy metals accumulated into large particles with increasing MD content. The mechanism of reducing PM emissions indicated that MD reacted with nucleation elements (Pb, Cd, etc.) and trapped a large amount of alkali metal (Na/K), which aggregated into large particles. The study highlights the potential of adding MD into coal to prevent the attachment of heavy metals onto ultrafine particles, thereby reducing the heavy metals emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.03.057 | DOI Listing |
Front Public Health
September 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Background: Chronic kidney disease (CKD), a global health challenge, is closely linked to renal fibrosis progression. Copper, an essential trace element, influences cellular functions, yet its role in CKD-related fibrosis remains unclear. This study explores the causal relationship between serum copper levels and renal fibrosis in CKD.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
A pseudo-hard-template, obtained by the self-assembly and disassembly of Victoria Pure Blue (VPB), was rationally designed to synthesize C-SiO hollow nanostructures (h-C-SiO). The hollow nanostructures show unprecedented perfluorooctanoic acid (PFOA) removal performance with an adsorption capacity of 790.71 mg g and fast adsorption kinetics of 4899.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDF