Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present work, the crystallization of anatase TiO₂ nanoparticles (NPs), using different ferrite nanoparticles with different chemical composition, dimensions and shape as nucleation seeds, was investigated. In particular, CoFe₂O₄, NiFe₂O₄ and Fe₃O₄ NPs with a volume ratio equal to 1:1000 with respect of TiO₂ amount, were used in order to investigate the synthesis of nanocrystalline tetragonal anatase TiO₂ by a hydrothermal synthesis. In addition, Lu₂O₃ nanoparticles were also used to detect the effect of a non-magnetic nanoparticle on the synthesis and nanocrystallization of titania. For each sample, a deep physical characterization was performed by XRD (with a Rietveld refinement of the structural data), FE-SEM, STEM, HRTEM, DSC analysis and BET surface area measurement. Furthermore, for some samples, the photocatalytic activity was investigated by degradation of methylene blue in aqueous medium, in the framework of a standard ISO 10678:2010 protocol. The hydrothermal synthesis was performed with a 3 hours' thermal treatment, at a pressure of approximatively 9 bar and a temperature significantly lower (T═150 °C) than the usual temperature necessary to obtain crystalline anatase TiO₂ (T═350 °C). The results give evidence that the mere presence of a nucleation seeds in the hydrothermal reactor, without any particular need for the composition and morphology, leads to crystalline anatase TiO₂ nanoparticles with high photocatalytic performances.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16787DOI Listing

Publication Analysis

Top Keywords

anatase tio₂
16
hydrothermal synthesis
12
nucleation seeds
12
ferrite nanoparticles
8
tio₂ nanoparticles
8
crystalline anatase
8
tio₂
6
synthesis
5
nanoparticles
5
systematic study
4

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Titanium dioxide (TiO) thin films were deposited on glass substrates under HV conditions at room temperature by the physical vapor deposition method. Produced titanium thin films were post-annealed at 573 K at different oxygen flows (0, 9 and 23 cm/s). The influence of different oxygen flows on nano-structure, crystallography, and optical parameters of TiO films was investigated by XRD, AFM, and spectrophotometer in the UV-VIS wavelength range.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO-NPs) are widely used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research was performed to explore the protective role FRN against TiO-NPs induced brain damage.

View Article and Find Full Text PDF