98%
921
2 minutes
20
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484417 | PMC |
http://dx.doi.org/10.15252/embj.2018100730 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China.
Wheat, a significant source of protein, can also induce various wheat-related allergic reactions (WRARs). Statistical data show significant spatiotemporal and geographical variations in the prevalence of WRARs. Studies reveal that hexaploid wheat exhibits notably higher allergenicity.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Biotechnology, Graduate School of Engineering, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,
To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDF