Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The classical stoichiometric oxidation of alcohols is an important tool in contemporary organic chemistry. However, it still requires huge modifications in order to comply with the principles of green chemistry. The use of toxic chemicals, hazardous organic solvents, and the large amounts of toxic wastes that result from the reactions are a few examples of the problems that must be solved. Nanogold alone or conjugated with palladium were supported on different carriers (SiO₂, C) and investigated in order to evaluate their catalytic potential for environmentally friendly alcohol oxidation under solvent-free and base-free conditions in the presence H₂O₂ as a clean oxidant. We tested different levels of Au loading (0.1⁻1.2% wt.) and different active catalytic site forms (monometallic Au or bimetallic Au⁻Pd sites). This provided new insights on how the structure of the Au-dispersions affected their catalytic performance. Importantly, the examination of the catalytic performance of the resulting catalysts was oriented toward a broad scope of alcohols, including those that are the most resistant to oxidation-the primary aliphatic alcohols. Surprisingly, the studies proved that Au/SiO₂ at a level of Au loading as low as 0.1% wt. appeared to be efficient and prospective catalytic system for the green oxidation of alcohol. Most importantly, the results revealed that 0.1% Au/SiO₂ might be the catalyst of choice with a wide scope of utility in the green oxidation of various structurally different alcohols as well as the non-activated aliphatic ones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474078PMC
http://dx.doi.org/10.3390/nano9030442DOI Listing

Publication Analysis

Top Keywords

catalytic performance
8
green oxidation
8
oxidation
5
alcohols
5
catalytic
5
study catalytic
4
catalytic oxidation
4
oxidation library
4
library c₂
4
c₂ c₄
4

Similar Publications

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

CuCo-Embedded Nitrogen-Doped Carbon as a Bifunctional Catalyst for Efficient Rechargeable Zinc-Ethanol/Air Batteries.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.

The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.

View Article and Find Full Text PDF

Magnetic nano-crosslinked lipase aggregates: Preparation and catalytic synthesis of OPO.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China. Electronic addres

1,3-Dioleoyl-2-palmitoylglycerol (OPO) is crucial for infant nutrition; however, conventional immobilized lipase requires high-purity enzymes, which increases costs and limits industrial scalability. Herein, Rhizomucor miehei lipase (RML) was immobilized on surface-modified magnetic nanoparticles using cross-linked enzyme aggregates (CLEAs) technology to produce FeO@SiO@TPOAC@RML CLEAs. This approach combines the separation and immobilization of enzymes, allowing for the use of lower-purity lipase, which enhances its suitability for industrial-scale processes.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF