98%
921
2 minutes
20
Band structures are vital in determining the electronic properties of materials. Recently, the two-dimensional (2D) semimetallic transition metal tellurides (WTe and MoTe) have sparked broad research interest because of their elliptical or open Fermi surface, making distinct from the conventional 2D materials. In this study, we demonstrate a centrosymmetric photothermoelectric voltage distribution in WTe nanoflakes, which has not been observed in common 2D materials such as graphene and MoS. Our theoretical model shows the anomalous photothermoelectric effect arises from an anisotropic energy dispersion and micrometer-scale hot carrier diffusion length of WTe. Further, our results are more consistent with the anisotropic tilt direction of energy dispersion being aligned to the b-axis rather than the a-axis of the WTe crystal, which is consistent with the previous first-principle calculations as well as magneto-transport experiments. Our work shows the photothermoelectric current is strongly confined to the anisotropic direction of the energy dispersion in WTe, which opens an avenue for interesting electro-optic applications such as electron beam collimation and electron lenses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b00513 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.
View Article and Find Full Text PDFMater Horiz
September 2025
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:
Occupational lung disease remains a serious concern among miner workers, underscoring the need for improved characterization of respirable dust. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) enables high-resolution analysis of filter samples, but accurate identification of complex, multi-constituent particles like agglomerates during direct-on-filter (DOF) analysis remains challenging. This is because standard tools for automated SEM-EDX treat each dust entity as an independent particle.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Mining Engineering, College of Engineering, University of Kentucky, Lexington, KY 40506, USA. Electronic address:
Occupational exposure to respirable crystalline silica (RCS) remains a significant health concern in metal and nonmetal (MNM) mining operations, contributing to the development of silicosis, lung cancer, and other chronic respiratory conditions. This review examines the prevalence and effects of RCS exposure in MNM mining environments, the toxicity of silica dust, and the effectiveness of regulatory interventions aimed at controlling exposure and mitigating health hazards. Key factors influencing RCS concentrations, including mine type, size, and geographic location, are analyzed, with particular focus on the impact of recent regulatory updates from the Mine Safety and Health Administration (MSHA).
View Article and Find Full Text PDF