A Triple-Filter NLOS Localization Algorithm Based on Fuzzy C-means for Wireless Sensor Networks.

Sensors (Basel)

Department of Computer and Communication Engineering, Northeastern University, Qinhuangdao 066004, China.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of communication technology in recent years, Wireless Sensor Network (WSN) has become a promising research project. WSN is widely applied in a number of fields such as military, environmental monitoring, space exploration and so on. The non-line-of-sight (NLOS) localization is one of the most essential techniques for WSN. However, the NLOS propagation of WSN is largely influenced by many factors. Hence, a triple filters mixed Kalman Filter (KF) and Unscented Kalman Filter (UKF) voting algorithm based on Fuzzy-C-Means (FCM) and residual analysis (TF-FCM) has been proposed to cope with this problem. Firstly, an NLOS identification algorithm based on residual analysis is used to identify NLOS errors. Then, an NLOS correction algorithm based on voting and NLOS errors classification algorithm based on FCM are used to process the NLOS measurements. Hard NLOS measurements and soft NLOS measurements are classified by FCM classification. Secondly, KF and UKF are applied to filter two categories of NLOS measurements. Thirdly, maximum likelihood localization (ML) is employed to estimate the position of mobile nodes. The simulation result confirms that the accuracy and robustness of TF-FCM are better than IMM, UKF and KF. Finally, an experiment is conducted to test and verify our algorithm which obtains higher localization accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427349PMC
http://dx.doi.org/10.3390/s19051215DOI Listing

Publication Analysis

Top Keywords

algorithm based
20
nlos measurements
16
nlos
10
nlos localization
8
wireless sensor
8
kalman filter
8
residual analysis
8
nlos errors
8
algorithm
6
based
5

Similar Publications

Objective: To develop and implement a method for determining the postmortem interval and the marginal errors of its estimates under conditions of linearly varying external temperature in the format of an online application.

Material And Methods: A computer-assissted numerical search for the absolute minimum point of the objective function obtained from a system of nonlinear equations reflecting the results of double rectal or cranioencephalic thermometry of a corpse under conditions of linearly varying external temperature was carried out. The search algorithm was generalized to possible marginal errors in measuring the initial indicators of temperature and time.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF

Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.

Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.

View Article and Find Full Text PDF