Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In lung cancer, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor sensitizing mutations co-existing with rare minor EGFR mutations are known as compound mutations. These minor EGFR mutations can lead to acquired resistance after EGFR tyrosine kinase inhibitor treatment, so determining the mutation status of patients is important. However, using amplicon-based targeted deep sequencing based on next-generation sequencing to characterize mutations is prone to sequencing error. We therefore assessed the benefit of incorporating molecular barcoding with high-throughput sequencing to investigate genomic heterogeneity in treatment-naïve patients who have undergone resection of their non-small cell lung cancer (NSCLC) EGFR mutations.

Methods: We performed amplicon-based targeted sequencing with the molecular barcoding system (MBS) to detect major common EGFR mutations and uncommon minor mutations at a 0.5% allele frequency in fresh-frozen lung cancer samples.

Results: Profiles of the common mutations of EGFR identified by MBS corresponded with the results of clinical testing in 63 (98.4%) out of 64 cases. Uncommon mutations of EGFR were detected in seven cases (10.9%). Among the three types of major EGFR mutations, patients with the G719X mutation had a significantly higher incidence of compound mutations than those with the L858R mutation or exon 19 deletion (p = 0.0052). This was validated in an independent cohort from the Cancer Genome Atlas dataset (p = 0.018).

Conclusions: Our findings demonstrate the feasibility of using the MBS to establish an accurate NSCLC patient genotype. This work will help understand the molecular basis of EGFR compound mutations in NSCLC, and could aid the development of new treatment modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390598PMC
http://dx.doi.org/10.1186/s12885-019-5374-1DOI Listing

Publication Analysis

Top Keywords

egfr mutations
20
mutations
13
amplicon-based targeted
12
molecular barcoding
12
minor egfr
12
lung cancer
12
compound mutations
12
egfr
11
targeted sequencing
8
sequencing molecular
8

Similar Publications

[Research status and future direction of irreversible EGFR-TKI in non-small cell lung cancer].

Zhonghua Jie He He Hu Xi Za Zhi

September 2025

Department of nursing, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) are important treatments for EGFR mutant non-small cell lung cancer (NSCLC). However, the first and second generation EGFR-TKI face clinical limitations due to acquired resistance, such as the T790M mutation. Irreversible EGFR-TKI can significantly prolong the survival of patients by enhancing the inhibition of drug-resistant mutations through the covalent binding mechanism.

View Article and Find Full Text PDF

Introduction: Amivantamab plus lazertinib significantly improved progression-free and overall survival versus osimertinib in patients with previously untreated, EGFR-mutant advanced NSCLC. EGFR-targeted therapies are associated with dermatologic adverse events (AEs), which can affect quality of life (QoL). COCOON was conducted to assess prophylactic management and improve treatment experience.

View Article and Find Full Text PDF

Background: Previous results from this phase 3 trial showed that progression-free survival among participants with previously untreated (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC) was significantly improved with amivantamab-lazertinib as compared with osimertinib. Results of the protocol-specified final overall survival analysis in this trial have not been reported.

Methods: We randomly assigned, in a 2:2:1 ratio, participants with previously untreated -mutated (exon 19 deletion or L858R substitution), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib, osimertinib, or lazertinib.

View Article and Find Full Text PDF

Purpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).

Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).

View Article and Find Full Text PDF

Discovery of Potent and Selective Pyrrolo[2,3-]pyrimidine Derivatives as Fourth-Generation EGFR Inhibitors Targeting Triple Mutations.

J Med Chem

September 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.

Three generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have shown clinical efficacy in nonsmall cell lung cancer (NSCLC), but acquired resistance mutations─especially the -EGFR─remain a major challenge. Here, we report the identification of a series of pyrrolo[2,3-]pyrimidine derivatives that inhibit C797S-mediated EGFR triple mutants. Among them, compound shows subnanomolar IC values against Ba/F3 EGFR and Ba/F3 EGFR, while sparing wild-type EGFR.

View Article and Find Full Text PDF