98%
921
2 minutes
20
In an effort to understand the underlying mechanisms of lymph node metastasis in oral squamous cell carcinoma (OSCC), through in vivo selection, LN1-1 cells were previously established from OEC-M1 cells and showed enhanced lymphangiogenesis and lymphatic metastasis capabilities. In the current study, we use a stable isotope labeling with amino acids in cell culture (SILAC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic platform to compare LN1-1 to OEC-M1 cells. Interferon-stimulated gene 15 (ISG15) was found highly expressed in LN1-1 cells. Immunohistochemical analysis and meta-analysis of publicly available microarray datasets revealed that the ISG15 level was increased in human OSCC tissues and associated with poor disease outcome. Knockdown of ISG15 had minimal effects on tumor growth but did decrease tumor lymphangiogenesis and lymphatic metastasis of LN1-1 cells. Consistent with the in vivo assay, ISG15 knockdown did not impair cell growth but diminished cell migration, invasion, and transendothelial migration in vitro. ISG15-induced cell migration was independent of ISGylation and associated with membrane protrusion. Ectopic expression of ISG15 increased Rac1 activity and knockdown of Rac1 impaired ISG15-enhanced migration. Furthermore, Rac1 colocalized with ISG15 to a region of membrane protrusion and ISG15 coimmunoprecipitated with Rac1, especially with the Rac1-GDP form. Importantly, as shown by proximity ligation assays, ISG15 and Rac1 physically interacted with each other. Our results indicated that ISG15 affects cell migration by interacting with Rac1 and regulating Rac1 activity and contributes to lymphatic metastasis in OSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-019-0731-8 | DOI Listing |
Curr Opin Microbiol
September 2025
Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:
The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFInfect Immun
September 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDF