Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA and forms unique nuclear body structures, which we term clathrate cage-like apparatus (CCLAs), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy as an enclosed environment for proper viral gene expression. The major breakthrough of this work is that viral protein IE2 localizes and transactivates its own viral DNA through a most unlikely route, i.e., host proteins Daxx and H3.3, which are designed to efficiently restrict viral DNA from expression. By interacting with these host intrinsic immune factors, IE2 can thus target the viral DNA and then form a unique spherical nuclear body, which we name the CCLA, to enclose the viral DNA and necessary factors to assist in high-level transactivation. Our study represents one of the most complete investigations of nuclear body formation. In addition, so far only RNA or protein molecules have been reported as potential nucleators for initiating nuclear body formation; our study may represent the first example showing that DNA can be a nucleator for a new class of nuclear body formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450129PMC
http://dx.doi.org/10.1128/JVI.00149-19DOI Listing

Publication Analysis

Top Keywords

viral dna
40
nuclear body
24
intrinsic immune
16
viral
14
dna
13
vero cells
12
host intrinsic
12
immune system
12
body formation
12
baculovirus ie2
8

Similar Publications

The chimpanzee adenovirus-vectored vaccine developed by the University of Oxford (ChAdOx1 nCoV-19) showed good stability when stored in refrigerator. However, the vaccine manufacturer prefers its transportation in frozen condition. Data regarding the stability of the vaccine after exposure to repeated freezing processes have not been explored yet.

View Article and Find Full Text PDF

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Interferon-induced miR-7705 modulates the anti-virus activity of cholesterol 25-hydroxylase.

J Virol

September 2025

Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

Unlabelled: Cholesterol 25-hydroxylase (CH25H), an interferon-stimulated gene (ISG), has been implicated in broad-spectrum antiviral immunity. Here, we identify CH25H as a potent suppressor of hepatitis B virus (HBV) replication that significantly outperforms IFN-α in reducing HBV DNA, pregenomic RNA (pgRNA), HBsAg, and HBeAg, without inducing cytotoxicity. However, CH25H is weakly expressed in hepatocytes and only modestly induced by type I interferon.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

Background: Mixed-phenotype acute leukemia (MPAL) is a rare acute leukemia for which data are currently not available to guide therapy. It has a poor outcome, particularly in elderly patients.

Case Presentation: We report the successful use of venetoclax/azacitidine as treatment for a treatment-naive elderly patient with early T-cell precursor (ETP)/myeloid MPAL.

View Article and Find Full Text PDF