Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of the present study was to investigate the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in the alterations of the dorsal and ventral striatal dopamine release and the vertical and horizontal locomotor activity observed in rats following chronic nicotine treatment and consequent acute withdrawal. In this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) injection with nicotine or saline solution for 7 days. On the 8th day or the 9th day the rats were injected intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin or saline solution. Thirty minutes after the icv injection the changes of the horizontal and vertical locomotor activity were recorded in an in vivo conducta system. Immediately after the behavioral recordings the changes of the dorsal and ventral striatal dopamine release were determined in an in vitro superfusion system. On the 8th day, the horizontal and vertical locomotor activities and the dorsal and ventral striatal dopamine releases increased significantly in nicotine-treated rats, compared to the saline-treated ones. On the 9th day, the horizontal locomotor activity and the dorsal striatal dopamine release increased significantly, whereas the vertical locomotor activity and the ventral striatal dopamine release decreased significantly in nicotine-treated rats, compared to the saline-treated ones. All the changes observed were attenuated significantly by antalarmin, but not astressin. The present study demonstrates that the changes of striatal dopamine release and locomotor activity observed following chronic nicotine treatment and consequent acute withdrawal are mediated by CRF1, but not CRF2, receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2018.10.028DOI Listing

Publication Analysis

Top Keywords

striatal dopamine
28
dopamine release
24
locomotor activity
24
ventral striatal
16
acute withdrawal
12
chronic nicotine
12
crf1 crf2
12
dorsal ventral
12
vertical locomotor
12
changes striatal
8

Similar Publications

Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.

Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).

View Article and Find Full Text PDF

Background: After remission of a first-episode psychosis (FEP), antipsychotic discontinuation is associated with an increased risk of relapse compared to maintenance treatment. We studied short and longer-term effects of discontinuation of D receptor (DR) antagonist and partial agonist antipsychotics on striatal dopamine DR availability in FEP patients.

Methods: Remitted FEP patients underwent two [C]raclopride PET scans to measure striatal DR availability: 1 week after antipsychotic discontinuation (n = 16 antagonist users, n = 6 partial agonist users) and after being medication free for 6-8 weeks (n = 8 antagonist users, n = 5 partial agonist users).

View Article and Find Full Text PDF

Ketamine has been widely used as a recreational substance by adolescents and young adults in nightclubs and raves in an acute manner, especially during the weekend. Considering the scarcity of evidence on the harmful consequences of adolescent ketamine recreational use on the central nervous system, primarily related to motor function, this study aimed to investigate the behavioral, biochemical, and neurochemical consequences on motor function induced by ketamine use, evaluating the motor cortex, cerebellum, and striatum in early abstinence. Adolescent female Wistar rats (28 days old) received ketamine by intranasal route (10mg/kg/day) for 3 consecutive days.

View Article and Find Full Text PDF

Swiss-Webster and C57BL/6 mice are differentially sensitive to the stimulant effects of methamphetamine.

Pharmacol Biochem Behav

September 2025

Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Department of Psychiatry and B

Methamphetamine is a highly addictive psychostimulant with significant neurobiological consequences, yet strain-dependent differences in its effects remain poorly understood. This study investigated behavioral and molecular differences in Swiss-Webster and C57BL/6 mice following methamphetamine exposure. Swiss-Webster mice exhibited greater behavioral sensitivity to methamphetamine compared to C57BL/6 mice, as demonstrated by lower peak doses required to elicit locomotor stimulation and conditioned place preference.

View Article and Find Full Text PDF

Parkinson's Disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, is clinically characterized by resting tremor, rigidity and postural balance disorder. Its pathological essence is the progressive degenerative death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), leading to a significant decrease in striatal dopamine (DA) levels. This results in the dysfunction of basal ganglia-thalamus-cortex (BGTC) circuit.

View Article and Find Full Text PDF