98%
921
2 minutes
20
Circadian clocks coordinate time-of-day-specific metabolic and physiological processes to maximize organismal performance and fitness. In addition to light and temperature, which are regarded as strong zeitgebers for circadian clock entrainment, metabolic input has now emerged as an important signal for clock entrainment and modulation. Circadian clock proteins have been identified to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs is now recognized as an important mechanism by which metabolic input regulates circadian physiology. To better understand the role of O-GlcNAcylation in modulating clock protein function within the molecular oscillator, we used mass spectrometry proteomics to identify O-GlcNAcylation sites of PERIOD (PER), a repressor of the circadian transcriptome and a critical biochemical timer of the Drosophila clock. In vivo functional characterization of PER O-GlcNAcylation sites indicates that O-GlcNAcylation at PER(S942) reduces interactions between PER and CLOCK (CLK), the key transcriptional activator of clock-controlled genes. Since we observe a correlation between clock-controlled daytime feeding activity and higher level of PER O-GlcNAcylation, we propose that PER(S942) O-GlcNAcylation during the day functions to prevent premature initiation of circadian repression phase. This is consistent with the period-shortening behavioral phenotype of per(S942A) flies. Taken together, our results support that clock-controlled feeding activity provides metabolic signals to reinforce light entrainment to regulate circadian physiology at the post-translational level. The interplay between O-GlcNAcylation and other PTMs to regulate circadian physiology is expected to be complex and extensive, and reach far beyond the molecular oscillator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372208 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007953 | DOI Listing |
Clin Kidney J
September 2025
Hypertension is a pervasive and progressive complication in chronic kidney disease (CKD) patients, affecting up to 90% of those in advanced stages or on dialysis. A particularly insidious aspect of this condition is nocturnal hypertension, characterized by high blood pressure (BP) during sleep and a blunted or absent nighttime BP dipping-phenomena associated with accelerated CKD progression and increased cardiovascular risk. Despite its strong prognostic significance, nocturnal hypertension remains underdiagnosed due to limited use of ambulatory BP monitoring.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Biological Sciences, University of Limerick, Limerick, Ireland.
This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression.
View Article and Find Full Text PDFSleep Adv
August 2025
Division of Public Health, Department of Family and Preventive Medicine, University of Utah, 303 Chipeta Way, Salt Lake City, UT 84013, United States of America.
Individuals with mild cognitive impairment (MCI) demonstrate cognitive decline without major functional impairment and are at increased risk for developing Alzheimer's disease and related dementias (ADRD). Sleep and biobehavioral rhythm disturbances (disruptions in 24-h oscillations in physiology and behavior, including rest-activity patterns and mealtimes) are more than twice as common among patients with MCI than cognitively intact older adults. Importantly, the consequences of sleep and biobehavioral rhythm disruption in MCI extend beyond the patient, also profoundly affecting the spouse/partner.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University;
Examining circadian synaptic plasticity requires housing mice under different lighting conditions (light/dark cycle, LD 12:12, and constant darkness, DD), providing access to running wheels, and sacrificing them at four defined time points within 24 h-at the beginning and middle of the day/subjective day and at the beginning and middle of the night/subjective night. Brains are then properly fixed for transmission electron microscopy (TEM). The barrel cortex, with its precise somatotopic organization, provides an ideal model for such analysis.
View Article and Find Full Text PDF