Imaging and Analytics on the Helium Ion Microscope.

Annu Rev Anal Chem (Palo Alto Calif)

Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg; email:

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-anchem-061318-115457DOI Listing

Publication Analysis

Top Keywords

imaging analytics
8
helium ion
8
ion microscope
8
secondary electron
8
imaging
5
analytics helium
4
ion
4
microscope helium
4
microscope emerged
4
emerged instrument
4

Similar Publications

The Hidden Influence: Impacts of Residual Dimethylformamide in NDSB-211 on icIEF Separation for Monoclonal Antibodies.

Electrophoresis

September 2025

Therapeutics Development and Supply-Analytical Development, Janssen Research & Development, LLC, Malvern, Pennsylvania, USA.

Monoclonal antibodies (mAbs) present analytical challenges due to their inherent heterogeneity and susceptibility to post-translational modifications (PTMs) during production and storage. Monitoring of charge heterogeneity profiles by imaged capillary isoelectric focusing (icIEF) has been aided by the use of non-detergent sulfobetaines (NDSBs), particularly NDSB-211, to enhance protein solubility and stability. When used in a quality control laboratory setting, NDSB-211 has shown performance variability over time due to residual manufacturing impurities that impact the capillary isoelectric focusing separation.

View Article and Find Full Text PDF

This systematic review and meta-analysis examines the role of romantic attachment as a protective or risk factor in how individuals cope with infertility diagnosis, treatment, and outcomes. A systematic search was conducted across six databases from January 1, 2011, to February 3, 2025. Seventeen studies met inclusion criteria, exploring associations between romantic attachment and individual psychological correlates of infertility.

View Article and Find Full Text PDF

Introduction: Targeted infection imaging is crucial for accurate diagnosis in postpartum women. This project uses 99mTc-labeled cefixime to develop a radiopharmaceutical for detecting, distinguishing, and treating infections and abscesses in women.

Method: Technetium (TcO4-) chelated with cefixime, reduced by stannous chloride, confirmed via thin-layer chromatography.

View Article and Find Full Text PDF

Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.

Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.

View Article and Find Full Text PDF

Subcellular distribution-based reference-free cancer cell discrimination with a novel AIE cationic probe.

Anal Chim Acta

November 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Electronic address:

Background: The development of specific fluorescent probes for cancer cell discrimination holds significant promise for advancing cancer diagnostics. Conventionally, these probes operate by translating differences in biomarkers or microenvironmental factors into variations in whole-cell fluorescence intensity. However, this dominant, intensity-based strategy is highly susceptible to extraneous fluctuations arising from probe concentration, illumination instability and complex intracellular environment.

View Article and Find Full Text PDF