Publications by authors named "Patrick Philipp"

The last decade, smoke and smokeless products claiming to be tobacco-free, including herbal cigarettes and herbal shisha, became available on the European market and gained popularity. This study proposes a new digital droplet PCR (ddPCR) method, designed based on a previously developed real-time PCR (qPCR) method being currently used by the U.S.

View Article and Find Full Text PDF

Background: Personalized mRNA vaccines are promising new therapeutic options for patients with cancer. Because mRNA vaccines are not yet approved for first-line therapy, the vaccines are presently applied to individuals that received prior therapies that can have immunocompromising effects. There is a need to address how prior treatments impact mRNA vaccine outcomes.

View Article and Find Full Text PDF

Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors. Furthermore, several domains of nanotechnology and industry use nanoscaled samples that need to be controlled to an extreme level of precision.

View Article and Find Full Text PDF

Screening mammography is a widely used approach for early breast cancer detection, effectively increasing the survival rate of affected patients. According to the Food and Drug Administration's Mammography Quality Standards Act and Program statistics, approximately 39 million mammography procedures are performed in the United States each year. Therefore, breast cancer screening is among the most common radiological tasks.

View Article and Find Full Text PDF
Article Synopsis
  • Focused ion beams (FIB) are widely used in nanotechnology for tasks like surface analysis and nanomachining, requiring precise control of ion-beam processes.
  • This study uses molecular dynamics simulations to examine how water contamination on a silicon surface affects the sputtering process when bombarded by 100 eV argon ions at varying angles of incidence.
  • While the overall sputtering yield of silicon remains consistent, the amount of hydrogen and oxygen atoms ejected during sputtering varies significantly with incidence angle, peaking at angles between 70 and 80°, where the ejected fraction increases from 25% to 65%.
View Article and Find Full Text PDF

Point mutations of the fibroblast growth factor receptor (FGFR)2 receptor in intrahepatic cholangiocarcinoma (iCC) are mainly of unknown functional significance compared to FGFR2 fusions. Pemigatinib, a tyrosine kinase inhibitor, is approved for the treatment of cholangiocarcinoma with FGFR2 fusion/rearrangement. Although it is hypothesized that FGFR2 mutations may cause uncontrolled activation of the signaling pathway, the data for targeted therapies for FGFR2 mutations remain unclear.

View Article and Find Full Text PDF

Emergent technologies are required in the field of nanoelectronics for improved contacts and interconnects at nano and micro-scale. In this work, we report a highly-efficient nanolithography process for the growth of cobalt nanostructures requiring an ultra-low charge dose (15 μC cm, unprecedented in single-step charge-based nanopatterning). This resist-free process consists in the condensation of a ∼28 nm-thick Co(CO) layer on a substrate held at -100 °C, its irradiation with a Ga focused ion beam, and substrate heating up to room temperature.

View Article and Find Full Text PDF

Metallic nanopatterns are ubiquitous in applications that exploit the electrical conduction at the nanoscale, including interconnects, electrical nanocontacts, and small gaps between metallic pads. These metallic nanopatterns can be designed to show additional physical properties (optical transparency, plasmonic effects, ferromagnetism, superconductivity, heat evacuation, etc.).

View Article and Find Full Text PDF

Nanoparticles occur in various environments as a consequence of man-made processes, which raises concerns about their impact on the environment and human health. To allow for proper risk assessment, a precise and statistically relevant analysis of particle characteristics (such as size, shape, and composition) is required that would greatly benefit from automated image analysis procedures. While deep learning shows impressive results in object detection tasks, its applicability is limited by the amount of representative, experimentally collected and manually annotated training data.

View Article and Find Full Text PDF

Home-based rehabilitation after an acute episode or following an exacerbation of a chronic disease is often problematic with a clear lack of continuity of care between hospital and home care. Secondary prevention is an essential element of long-term rehabilitation where strategies oriented toward risk reduction, treatment adherence, and optimization of quality of life need to be applied. Frail and sometimes isolated, the patient fails to adhere to the proposed post-discharge clinical pathway due to lack of appropriate clinical, emotional, and informational support.

View Article and Find Full Text PDF

After several years of negative phase III trials in gastric and esophageal cancer, a significant breakthrough in the treatment of metastatic adenocarcinomas of the gastroesophageal junction (GEJ) and stomach (GC) is now becoming evident with the emerging of precision oncology and implementation of molecular targets in tumor treatment. In addition, new generation studies such as umbrella and basket trials are focused on these molecular targets, which makes an early molecular diagnosis based on IHC/ISH and NGS necessary. The required companion diagnostics of Her2neu overamplification or PD-L1 expression is based on immunohistochemistry (IHC) or additionally in situ hybridization (ISH) in case of an IHC Her2neu score of 2+.

View Article and Find Full Text PDF

This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument.

View Article and Find Full Text PDF

Providing a suitable rehabilitation after an acute episode or a chronic disease helps people to live independently and enhance their quality of life. However, the continuity of care is often interrupted in the transition from hospital to home. Virtual coaches (VCs) could help these patients to engage in personalized home rehabilitation programs.

View Article and Find Full Text PDF

The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • * Scientists studied a special type of bacteria called Bacillus subtilis to understand how AMR genes can spread, especially when they are on mobile pieces of DNA called plasmids.
  • * By using advanced DNA sequencing techniques, they were able to find and organize the AMR genes better, showing that some genes were actually hidden in the bacteria's main DNA, which is important for understanding how to stop the spread of resistance.
View Article and Find Full Text PDF

In this contribution, we compare the performance of Focused Electron Beam-induced Deposition (FEBID) and Focused Ion Beam-induced Deposition (FIBID) at room temperature and under cryogenic conditions (the prefix "Cryo" is used here for cryogenic). Under cryogenic conditions, the precursor material condensates on the substrate, forming a layer that is several nm thick. Its subsequent exposure to a focused electron or ion beam and posterior heating to 50 °C reveals the deposit.

View Article and Find Full Text PDF

The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.

View Article and Find Full Text PDF

The mechanical, structural, electronic and magnetic properties of carbon nanotubes can be modified by electron or ion irradiation. In this work we used 25 keV He and Ne ion irradiation to study the influence of fluence and sample thickness on the irradiation-induced damage of multiwalled carbon nanotubes (MWCNTs). The irradiated areas have been characterised by correlative Raman spectroscopy and TEM imaging.

View Article and Find Full Text PDF

The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging.

View Article and Find Full Text PDF

Quantitative analyses in secondary ion mass spectrometry (SIMS) become possible only if ionization processes are controlled. The Storing Matter technique has been developed to circumvent this so-called matrix effect, primarily for inorganic samples, but has also been extended to organic samples. For the latter, it has been applied to polystyrene in order to investigate the extent of damage in the polymer, its fragmentation during the sputter deposition process and the effect of the deposition process on the spectra taken by Time-of-Flight SIMS (ToF-SIMS).

View Article and Find Full Text PDF

Secondary ion mass spectrometry (SIMS) on the helium ion microscope (HIM) promises higher lateral resolution than on classical SIMS instruments. However, full advantage of this new technique can only be obtained when the interaction of He(+) or Ne(+) primary ions with the sample is fully controlled. In this work we investigate how He(+) and Ne(+) bombardment influences roughness formation and preferential sputtering for polymer samples and how they compare to Ar(+) primary ions used in classical SIMS by combining experimental techniques with Molecular Dynamics (MD) simulations and SD_TRIM_SP modelling.

View Article and Find Full Text PDF

Purpose: Assistance algorithms for medical tasks have great potential to support physicians with their daily work. However, medicine is also one of the most demanding domains for computer-based support systems, since medical assistance tasks are complex and the practical experience of the physician is crucial. Recent developments in the area of cognitive computing appear to be well suited to tackle medicine as an application domain.

View Article and Find Full Text PDF
Article Synopsis
  • An unauthorized GM Bacillus subtilis bacterium producing vitamin B2 was found in feed additives, challenging enforcement labs to identify it due to a lack of detection methods.
  • Next Generation Sequencing (NGS) was utilized to gather sequence data, but the analysis required expertise that most labs lacked, impeding rapid identification.
  • A simple approach using BLAST allowed for the development of a TaqMan® qPCR method, enabling the direct detection of the GM bacterium in feed without prior culturing, complying with EU performance standards.
View Article and Find Full Text PDF

In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions.

View Article and Find Full Text PDF