Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation.

Beilstein J Nanotechnol

Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg.

Published: July 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanical, structural, electronic and magnetic properties of carbon nanotubes can be modified by electron or ion irradiation. In this work we used 25 keV He and Ne ion irradiation to study the influence of fluence and sample thickness on the irradiation-induced damage of multiwalled carbon nanotubes (MWCNTs). The irradiated areas have been characterised by correlative Raman spectroscopy and TEM imaging. In order to preclude the Raman contribution coming from the amorphous carbon support of typical TEM grids, a new methodology involving Raman inactive Au TEM grids was developed. The experimental results have been compared to SDTRIMSP simulations. Due to the small thickness of the MWCNTs, sputtering has been observed for the top and bottom side of the samples. Depending on thickness and ion species, the sputter yield is significantly higher for the bottom than the top side. For He and Ne irradiation, damage formation evolves differently, with a change in the trend of the ratio of D to G peak in the Raman spectra being observed for He but not for Ne. This can be attributed to differences in stopping power and sputter behaviour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071685PMC
http://dx.doi.org/10.3762/bjnano.9.186DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
ion irradiation
12
multiwalled carbon
8
tem grids
8
defect formation
4
formation multiwalled
4
carbon
4
nanotubes low-energy
4
ion
4
low-energy ion
4

Similar Publications

The effect of electron irradiation ( = 1.8 MeV) on the optical properties of polyethylene glycol 400-multiwalled carbon nanotube (PEG-400/MWCNT) nanocomposite films was studied within an absorbed dose range of 0 to 0.4 MGy.

View Article and Find Full Text PDF

Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).

View Article and Find Full Text PDF

Aerogels are widely used in environmental remediation, but their application is hindered by brittleness, limited oil absorption and poor separation of viscous crude oil. In this study, a multifunctional superhydrophobic aerogel with electrothermal and photothermal effects was prepared from bacterial cellulose (BC), methyltrimethoxysilane (MTMS), and hydroxylated carbon nanotubes (HCNT) by soft-hard synergistic and directed freezing. The prepared aerogel exhibited an oriented layered porous structure with excellent compressibility and oil retention capacity.

View Article and Find Full Text PDF

The increasing global demand for food and the adverse environmental impacts of excessive agrochemical use highlights the urgent need for sustainable and scalable seed treatment technologies. This paper reports a novel photothermal seed coating (QC@SCCNTs) with high biocompatibility, exceptional photothermal efficiency, and notable reusability, serving as an effective alternative to conventional chemical treatments. The coating consists of sericin-functionalized carboxylated carbon nanotubes (SCCNTs) electrostatically complexed with quaternary ammonium chitosan (QC), forming a composite film (QS film).

View Article and Find Full Text PDF

Developing efficient, sustainable, earth-abundant, cost-effective electrocatalysts is extremely challenging. Cobalt-iron-layered double hydroxide nanosheets (Co-Fe-LDH NSs) hybridized with carbon nanotubes (CNTs) lead to anchors Co-Fe-LDH-CNTs (CFC) self-assembly with a mesoporous morphology, expanded surface area, fast charge transfer kinetics, and high electrical conductivity. The resultant anchored CFC nanohybrid is highly active for electrocatalytic oxygen evolution reaction (OER), showing a lower overpotential of 221 and 313 mV at a current density of 10 and 25 mA cm, respectively, compared to pristine Co-Fe-LDH (339 and 391 mV), showcasing the significant role of CNTs in improving the electrocatalytic performance of pristine Co-Fe-LDH.

View Article and Find Full Text PDF