Activation of Notch signaling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway.

Am J Physiol Heart Circ Physiol

Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham , United Kingdom.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor -[-(3,5-difluorophenacetyl)-l-alanyl]--phenylglycine -butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580391PMC
http://dx.doi.org/10.1152/ajpheart.00610.2018DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
dll4
8
vascular permeability
8
vascular-endothelial cadherin
8
sdll4-mediated reduction
8
reduction permeability
8
permeability
6
notch
5
pka
5
activation notch
4

Similar Publications

Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.

View Article and Find Full Text PDF

Endothelial to mesenchymal transition: a central mechanism in diabetes-induced vascular pathology.

Korean J Physiol Pharmacol

September 2025

Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.

Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.

View Article and Find Full Text PDF

Machine learning-based identification of a transcriptomic blood signature discriminating between systemic autoimmunity and infection.

Med

August 2025

Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address: p

Background: Pathogenic responses against self and foreign antigens in systemic autoimmunity and infection, respectively, engage similar immunologic components, thus lacking distinguishing diagnostic biomarkers. Herein, we tested whether whole-blood transcriptome analysis discriminates autoimmune from infectious diseases.

Methods: We applied nested cross-validation methodology to tune and validate random forests, k-nearest neighbors, and support vector machines, using a new preprocessing method on 22 publicly available datasets, including 594 patients with a broad spectrum of systemic autoimmune diseases and 615 patients with diverse viral, bacterial, and parasitic infections.

View Article and Find Full Text PDF

NOTCH signaling orchestrates the inflammatory-fibrotic continuum of macrophages in renal allograft rejection.

Exp Cell Res

September 2025

Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong 510080, China. Electronic address:

Background: Chronic rejection is a major cause of long-term kidney allograft failure, characterized by persistent inflammation and progressive fibrosis. Macrophages are central mediators of this process, but their phenotypic heterogeneity and regulatory mechanisms in chronic rejection remain incompletely understood.

Methods: We performed single-cell transcriptomic analysis on renal allograft biopsies from patients with different types of rejection and on a time-course rat model of chronic rejection.

View Article and Find Full Text PDF

Asprosin is glucogenic adipokine that exerts a wide repertoire of actions, including the regulation of appetite, insulin resistance and cell proliferation. At present, little is known about the actions of asprosin in the human placenta. The present study investigated the effects of asprosin on the transcriptome of the BeWo and JEG‑3 placental cell lines, and assessed the expression of FBN1/Furin and asprosin's candidate receptors in healthy placentas when compared against placentas from pregnancies where the carrier had gestational diabetes mellitus (GDM).

View Article and Find Full Text PDF