98%
921
2 minutes
20
In this paper, classical molecular dynamics simulations are conducted to study the graphene grown on copper substrates under ion beam irradiation, in which the emphasis is put on the influence copper substrate on a single graphene layer. It can be inferred that the actual transmission and distribution of kinetic energy from incident ion play important roles in irradiation-defects forming process together. The minimum value needed to generate defects in supported graphene is higher than 2.67 keV, which is almost twice the damage threshold as the suspended graphene sheet. This work indicates the presence of copper substrate increases the damage threshold of graphene. Additionally, our results provide an atomistic explanation for the graphene with copper substrate under ion irradiation, which is very important for engineering graphene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356256 | PMC |
http://dx.doi.org/10.3390/ma12020319 | DOI Listing |
EJNMMI Radiopharm Chem
September 2025
Department of Experimental Neurooncological Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 04318, Leipzig, Germany.
Background: Copper-mediated radiofluorination (CMRF) is a breakthrough in F-radiochemistry, enabling F incorporation into molecules even at electron-rich aromatic positions. In recent years, several improved protocols have been reported to advance the application of CMRF. These advancements primarily focus on improving radiochemical conversion, expanding substrate scope, and enabling scalability for remote-controlled radiotracer production.
View Article and Find Full Text PDFACS Omega
September 2025
Materials and Manufacturing Directorate, AFRL/RXEE, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.
This study addresses a critical limitation in direct bonded copper (DBC) materials used in power electronics by introducing a copper-zirconium (Cu/Zr) alloy interposing layer at the copper-ceramic interface. This novel design aims to mitigate mechanical stress induced by mismatched material properties, such as the coefficient of thermal expansion (CTE) and elastic modulus, during thermal cycling. The key findings of this study are (1) thermal fatigue improvement: Test samples with the Cu/Zr interface layer (Cu-Cu/Zr-AlN) three times enhanced thermal fatigue resistance, surviving 30 thermal cycles from -55 to 300 °C before delamination, while standard DBC substrates without the Cu/Zr layer failed after just 10 cycles, indicating a performance improvement with the Cu/Zr alloy, (2) durability projections: Based on the Coffin-Manson model, if the upper temperature is capped at 150 °C, the Cu-Cu/Zr-AlN substrates are projected to survive approximately 1372 cycles, underscoring their potential for long-term reliability, and (3) stress mitigation: The Cu/Zr alloy layer bridges the CTE disparity between copper and ceramic, reducing mechanical stress and improving structural integrity across a broad temperature range (-55 to 300 °C).
View Article and Find Full Text PDFAs humanity ventures beyond Earth, developing radiation-stable coatings from non-fossil sources becomes essential. Beta radiation can significantly harm materials, making it essential to seek resilient, biobased alternatives to work in corrosive environments and high temperatures. Herein, a novel lignin-based coating demonstrating exceptional beta-radiation resistance and anticorrosion properties is presented.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDF