One-step preparation of polyimide-inlaid amine-rich porous organic block copolymer for efficient removal of chlorophenols from aqueous solution.

J Environ Sci (China)

Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Scie

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel polyimide-inlaid amine-rich porous organic block copolymer (PI-b-ARPOP) was prepared via one-step polymerization by using different molar ratios of melamine (MA)/terephthalaldehyde (TA)/pyromellitic dianhydride (PMDA), at molar ratios of 4/3/1, 4/2/2 and 4/1/3. The copolymer contained both aminal groups belonging to ARPOP and imide groups belonging to PI, and the bonding styles of the monomers and growth orientations of the polymeric chains were diversiform, forming an excellent porous structure. Notably, MA/TA/PMDA (4/2/2) had a surface area and pore volume of 487.27 m/g and 1.169 cm/g, respectively. The adsorption performance of the materials towards 2,4-dichlorophenol (2,4-DCP) in ultra-pure water was systematically studied. The pH value of 7 was optimal in aqueous solution. Na and Cl ions did not negatively affect the adsorption process, while humic acid (HA) slightly decreased the capacity. The equilibrium time was 40 sec, and the maximum adsorption capacity reached 282.49 mg/g at 298 K. The removal process was endothermic and spontaneous, and the copolymer could maintain its porous structure and consistent performance after regeneration by treatment with alkali. Moreover, to further assess the practical applicability of the material, the adsorption performance towards 2,4-DCP in river water was also investigated. This paper demonstrated that the PI-b-ARPOP can be an efficient and practical adsorbent to remove chlorophenols from aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2018.09.023DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
polyimide-inlaid amine-rich
8
amine-rich porous
8
porous organic
8
organic block
8
block copolymer
8
chlorophenols aqueous
8
molar ratios
8
groups belonging
8
porous structure
8

Similar Publications

Nonlinear Scaling of Water-Ion Interactions and Dynamics in Alkaline Solutions.

J Phys Chem Lett

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.

View Article and Find Full Text PDF

Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.

View Article and Find Full Text PDF

Evaluation of novel surfactants for the decontamination of chemical warfare agents.

Toxicol Mech Methods

September 2025

Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, Hradec Kralove, University of Defence, Brno, Czech Republic.

The decontamination of chemical warfare agents or compounds involved in chemical industry incidents poses a significant challenge to environmental protection and human health. These compounds are highly toxic and could be relatively resistant to conventional decontamination methods. In recent years, surfactants have emerged as a promising option, as they can enhance the solubility of organophosphorus compounds in aqueous solutions while promoting their degradation or adsorption onto surfaces.

View Article and Find Full Text PDF

To expand the application scope of carbon steel, imparting superhydrophobicity to its surface offers an effective strategy to overcome its inherently poor corrosion resistance. However, in marine environments, conventional superhydrophobic coatings often suffer from limited mechanical durability and inadequate long-term corrosion protection. In this study, a durable superhydrophobic bilayer coating composed of PDMS-MWCNTs (top layer) and PDMS (bottom layer) was developed to address these challenges.

View Article and Find Full Text PDF

Characteristics of Calcined Sugarcane Bagasse and Its Ability to Adsorb Cadmium from Aqueous Solutions.

Chem Pharm Bull (Tokyo)

September 2025

Laboratory of Public Health, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.

This study evaluated the cadmium (Cd) adsorption characteristics of sugarcane bagasse (BG) calcined at different temperatures (200-1000°C). The point of zero charge (pH) of the BGs ranged from 4.3 to 6.

View Article and Find Full Text PDF