98%
921
2 minutes
20
Mesenchymal stem cells (MSCs), which are multipotent and have self-renewal ability, support the regeneration of damaged normal tissue. A number of external stimuli promote migration of MSCs into peripheral blood and support their participation in wound healing. In an attempt to harness the potential beneficial effects of such external stimuli, we exposed human MSCs (hMSCs) to one such stimulus-low-dose ionizing radiation (LDIR)-and examined their biological properties. To this end, we evaluated differences in proliferation, cell cycle, DNA damage, expression of surface markers (CD29, CD34, CD90, and CD105), and differentiation potential of hMSCs before and after irradiation with γ-rays generated using a CS irradiator. At doses less than 50 mGy, LDIR had no significant effect on the viability or apoptosis of hMSCs. Interestingly, 10 mGy of LDIR increased hMSC viability by 8% ( < 0.001) compared with non-irradiated hMSCs. At doses less than 50 mGy, LDIR did not induce DNA damage, including DNA strand breaks, or cause cellular senescence or cell-cycle arrest. Surface marker expression and differentiation potential of hMSCs were maintained after two exposures to LDIR at 10 mGy per dose. In conclusion, a two-dose exposure to LDIR at 10 mGy per dose not only facilitates proliferation of hMSCs, it also maintains the stem cell characteristics of hMSCs without affecting their viability. These results provide evidence for the potential of LDIR as an external stimulus for expansion of hMSCs and application in tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171613 | PMC |
http://dx.doi.org/10.1007/s13770-017-0045-2 | DOI Listing |
ACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.
Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.
View Article and Find Full Text PDFSaudi Dent J
September 2025
Oral Biology Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
To compare the efficacy of using bone marrow mesenchymal stem cell (BM-MSC) exosomes and injectable platelet rich fibrin (i-PRF) on the submandibular salivary glands (SMGs) of aged albino rats in restoring salivary gland structure and function. A total of 40 healthy male albino rats were used, two for obtaining the BM-MSCs, 10 for i-PRF preparation and seven adult rats (6-8 months old) represented the control group (Group 1). The remaining 21 rats were aged (18-20 months old) and divided into three groups of seven rats each; (Group 2): received no treatment, (Group 3): each rat received a single intraglandular injection of BM-MSC exosomes (50 μg/kg/dose suspended in 0.
View Article and Find Full Text PDFExpert Opin Drug Deliv
September 2025
Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, PR China.
Introduction: Hematopoietic stem cell transplantation (HSCT) is a promising treatment option for hematological malignancies. Despite its curative potential, it faces clinical challenges, including relapse and graft-versus-host disease (GVHD). Systemic toxicity due to chemotherapy is a significant problem in patients with hematological malignancies.
View Article and Find Full Text PDF