Publications by authors named "Chun-Ho Kim"

Hydrogels are ECM-mimicking three-dimensional (3D) networks that are widely used in biomedical applications; however, conventional natural and synthetic polymer-based hydrogels present limitations such as poor mechanical strength, limited bioactivity, and low reproducibility. Self-assembling peptides (SAPs) offer a promising alternative, as they can form micro- and nanostructured hydrogels through non-covalent interactions and allow precise control over their biofunctionality, mechanical properties, and responsiveness to biological cues. Through rational sequence design, SAPs can be engineered to exhibit tunable mechanical properties, controlled degradation rates, and multifunctionality, and can dynamically regulate assembly and degradation in response to specific stimuli such as pH, ionic strength, enzymatic cleavage, or temperature.

View Article and Find Full Text PDF

Background: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration.

Methods: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR).

View Article and Find Full Text PDF

Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal.

View Article and Find Full Text PDF

Radiation treatment is one of the most frequently used therapies in patients with cancer, employed in approximately half of all patients. However, the use of radiation therapy is limited by acute or chronic adverse effects and the failure to consider the tumor microenvironment. Blood vessels substantially contribute to radiation responses in both normal and tumor tissues.

View Article and Find Full Text PDF

Background: Tissue engineering, including 3D bioprinting, holds great promise as a therapeutic tool for repairing cartilage defects. Mesenchymal stem cells have the potential to treat various fields due to their ability to differentiate into different cell types. The biomimetic substrate, such as scaffolds and hydrogels, is a crucial factor that affects cell behavior, and the mechanical properties of the substrate have been shown to impact differentiation during incubation.

View Article and Find Full Text PDF

Background/aim: The fibroblast growth factor receptor (FGFR) signaling pathway is abnormally activated in human cancers, including breast cancer. Therefore, targeting the FGFR signaling pathway is a potent strategy to treat breast cancer. The purpose of this study was to find drugs that could increase sensitivity to FGFR inhibitor effects in BT-474 breast cancer cells, and to investigate the combined effects and underlying mechanisms of these combinations for BT-474 breast cancer cell survival.

View Article and Find Full Text PDF

Background: Although the use of cardiac patches is still controversial, cardiac patch has the significance in the field of the tissue engineered cardiac regeneration because it overcomes several shortcomings of intra-myocardial injection by providing a template for cells to form a cohesive sheet. So far, fibrous scaffolds fabricated using electrospinning technique have been increasingly explored for preparation of cardiac patches. One of the problems with the use of electrospinning is that nanofibrous structures hardly allow the infiltration of cells for development of 3D tissue construct.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a diverse family of cell surface receptors implicated in various physiological functions, making them common targets for approved drugs. Many GPCRs are abnormally activated in cancers and have emerged as therapeutic targets for cancer. Neuropeptide FF receptor 2 (NPFFR2) is a GPCR that helps regulate pain and modulates the opioid system; however, its function remains unknown in cancers.

View Article and Find Full Text PDF

Background/aim: Metformin is a widely used drug for type 2 diabetes mellitus and has recently attracted broad attention for its therapeutic effects on many cancers. This study aimed to investigate the molecular mechanism of metformin's anticancer activity.

Materials And Methods: Cell viability was measured by MTT assay.

View Article and Find Full Text PDF

Although chitosan is the second most abundant natural polymer on earth, with a wide range of biomaterial applications, its poor water solubility limits general printing process. We selected water-soluble methacrylated glycol chitosan (MeGC) as an alternative and prepared a MeGC-based MG-63 cell-laden bioink for 3D printing using a visible light curing system. Optimal cell-laden 3D printing of MeGC was completed at 3% using 12 μM of riboflavin as a photoinitiator under an irradiation for 70 s, a 26-gauge nozzle, a pneumatic pressure of 120 kPa, and a printing speed of 6 mm/s, as confirmed by printability, protein adsorption, cell viability, cell proliferation, and osteogenic capability.

View Article and Find Full Text PDF

Although endocrine therapy with tamoxifen has improved survival in breast cancer patients, resistance to this therapy remains one of the major causes of breast cancer mortality. In the present study, we found that the expression level of YAP/TAZ in tamoxifen-resistant MCF7 (MCF7-TR) breast cancer cells was significantly increased compared with that in MCF7 cells. Knockdown of YAP/TAZ with siRNA sensitized MCF7-TR cells to tamoxifen.

View Article and Find Full Text PDF

Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds.

View Article and Find Full Text PDF

Background: The molecular weight of hyaluronic acid (HyA) depends on the type of organ in the body. When HyA of the desired molecular weight is implanted into the human body for regeneration of damaged tissue, it is degraded by hyaluronidase in associated with an inflammatory response. This study sought to evaluate the effects of HyA molecular weight and concentration on pro- and anti-inflammatory responses in murine macrophages.

View Article and Find Full Text PDF

Chlorin e6 (Ce6), with its high phototoxic potential, has wide applications in photodynamic therapy (PDT) for many human diseases. However, poor cancer cell localization of Ce6 has limited its direct application for PDT. Here, we developed cancer-targeting peptide p 18-4/chlorin e6 (Ce6)-conjugated polyhedral oligomeric silsesquioxane (PPC) nanoparticles for improving the targeting ability of Ce6 to breast cancer cells, thereby enhancing PDT efficacy.

View Article and Find Full Text PDF

Lysyl oxidase (LOX) is a cell-secreted amine oxidase that crosslinks collagen and elastin in extracellular microenvironment. LOX-traceable nanoparticles (LOX-NPs) consisting of LOX antibodies (LOX) and paclitaxel, can accumulate at high concentrations at radiation-treated target sites, as a tumor-targeting drug carrier for chemotherapy. Tumor-targeting and anticancer effects of PLGA based LOX-NPs in vitro and in vivo were evaluated at radiation-targeted site.

View Article and Find Full Text PDF

Biocompatible and biodegradable gelatin is a good candidate bioink for use in 3D bioprinting technologies, but viscous gelatin solution has a low printability. In order to improve the poor printability of gelatin, we optimized the rheological properties of gelatin solution. 3D gelatin scaffolds were then cross-linked using physical or chemical methods to maintain the 3D structure.

View Article and Find Full Text PDF

Chitosan, a deacetylated chitin, is one of the few natural polymers similar to glycosaminoglycans (GAGs) widely distributed throughout connective tissues. It has been believed that the excellent biocompatibility of chitosan is largely attributed to this structural similarity. Chitosan is also known to possess biodegradability, antimicrobial activity and low toxicity and immunogenicity which are essential for scaffolds.

View Article and Find Full Text PDF

Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs.

View Article and Find Full Text PDF

In this study, we first prepared the precursor polytetrafluoroethylene (PTFE)/poly(ethylene oxide) (PEO) nanofibrous membranes by electrospinning with different PTFE/PEO weight ratios. These membranes exhibited three-dimensional interconnected pore structures. The average diameter of the precursor nanofibres decreased with increased PTFE contents from 633 ± 34 nm (PTFE/PEO weight ratio of 5 : 1) to 555 ± 63 nm (PTFE/PEO weight ratio of 7 : 1) because of the decrease in solution viscosity.

View Article and Find Full Text PDF

Purpose: Recent evidence suggests that regular exercise training plays a decisive role in maintaining homeostasis and promoting muscle and skeletal formation. However, the effect of downhill exercise training on osteogenesis-related factors is not well understood.

Methods: Thus, we investigated the effect of uphill and downhill training on ovariectomy (OVX)-induced bone loss.

View Article and Find Full Text PDF

Conducting polymer-based scaffolds receive biological and electrical signals from the extracellular matrix (ECM) or peripheral cells, thereby promoting cell growth and differentiation. Chitin, a natural polymer, is widely used as a scaffold because it is biocompatible, biodegradable, and nontoxic. In this study, we used an electrospinning technique to fabricate conductive scaffolds from aligned chitin/polyaniline (Chi/PANi) nanofibers for the directional guidance of cells.

View Article and Find Full Text PDF

Clinical irradiation therapy for cancer could increase the risk of localized wound complications. This study was conducted to evaluate the potential use of a chitosan microparticle-pluronic F127 (CSMP-PF) hydrogel complex containing bioactive molecules, substance P and transforming growth factor-β1, to regeneratively repair skin damaged by local ionizing radiation (IR). The BALB/c/bkl mice were locally irradiated to their limbs with a single 40 Gy dose of Co-60 γ rays to induce a skin injury.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the most aggressive and lethal among the gynecological malignancies, which is often found disseminated to peritoneal cavity at the time of diagnosis. There is accumulating evidence on the existence of genetic alteration and amplification of fibroblast growth factor receptor (FGFR) in various cancers. Also the aberrated FGFR/FGF signaling has been implicated in cancer development and tumor microenvironment.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs), which are multipotent and have self-renewal ability, support the regeneration of damaged normal tissue. A number of external stimuli promote migration of MSCs into peripheral blood and support their participation in wound healing. In an attempt to harness the potential beneficial effects of such external stimuli, we exposed human MSCs (hMSCs) to one such stimulus-low-dose ionizing radiation (LDIR)-and examined their biological properties.

View Article and Find Full Text PDF

The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc.

View Article and Find Full Text PDF