98%
921
2 minutes
20
The stimuli-sensitive and biodegradable hydrogels are promising biomaterials as controlled drug delivery systems for diverse biomedical applications. In this study, we construct hybrid hydrogels combined with peptide-based bis-acrylate and acrylic acid (AAc). The peptide-based bis-acrylate/AAc hybrid hydrogel displays an interconnected and porous structure by scanning electron microscopy (SEM) observation and exhibits pH-dependent swelling property. The biodegradation of hybrid hydrogels was characterized by SEM and weight loss, and the results showed the hydrogels have a good enzymatic biodegradation property. The mechanical and cytotoxicity properties of the hydrogels were also tested. Besides, triclosan was preloaded during the hydrogel formation for drug release and antibacterial studies. In summary, the peptide-based bis-acrylate/AAc hydrogel with stimuli sensitivity and biodegradable property may be excellent candidates as drug delivery systems for antibacterial wound dressing application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321375 | PMC |
http://dx.doi.org/10.3390/molecules23123383 | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Pharmacy, Jiblah University for Medical and Health Science, Ibb, Yemen.
Background: () Resin has been used in traditional medicine for millennia because of its anti-inflammatory, antibacterial, and wound-healing characteristics. Recent research has proved its medicinal promise, particularly against resistant bacterial strains and oxidative stress.
Objective: This study seeks to assess the antimicrobial and antioxidant properties of resin, extracted with ethanol, and to formulate a topical cream for dermatological use, specifically targeting skin infections and inflammatory conditions such as acne.
Biofabrication
September 2025
Institute of Macromolecular Chemistry, Institute of Macromolecular Chemistry Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Prague, Prague, 162 06, CZECH REPUBLIC.
Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.
High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.
View Article and Find Full Text PDFBiomater Adv
September 2025
Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China. Electronic address:
Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.
View Article and Find Full Text PDF