Heavy carbon nanodots 2: plasmon amplification in Quanta Plate™ wells and the correlation with the synchronous scattering spectrum.

Phys Chem Chem Phys

Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 East Pratt Street, Baltimore, Maryland 21202, USA.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brominated carbon nanodots are a new carbon nanostructure that exhibits strong phosphorescence without fixation. Herein we report plasmonic amplification of this phosphorescence in silver-coated Quanta Plate™ wells, a technique called metal-enhanced phosphorescence (MEP). Subsequently we correlate the excitation and emission components of brominated carbon nanodots to their respective enhancement values. These properties are then discussed in relation to the synchronous scattering spectrum of the plasmonic substrate, in the first report of its kind for MEP. These results set the foundation for expanded application of carbon nanodots, as the photophysical characteristics of phosphorescence are improved, and augment the growing understanding of MEP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398338PMC
http://dx.doi.org/10.1039/c8cp06299dDOI Listing

Publication Analysis

Top Keywords

carbon nanodots
16
quanta plate™
8
plate™ wells
8
synchronous scattering
8
scattering spectrum
8
brominated carbon
8
heavy carbon
4
nanodots
4
nanodots plasmon
4
plasmon amplification
4

Similar Publications

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.

View Article and Find Full Text PDF

Natural quercetin-derived carbon nanodots for dual antibacterial and anti-inflammatory therapy against bacterial infections.

Colloids Surf B Biointerfaces

September 2025

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163,

Bacterial infections and the associated inflammatory responses present significant challenges to public health, underscoring the need for innovative therapeutic strategies. In this study, novel carbon dots (QA-CDs) derived from quercetin (QU) and 4-aminophenol (4-AP) were synthesized using a one-step hydrothermal method. This approach merges the antimicrobial properties of phenolic compounds with the multifunctional advantages of carbon-based nanomaterials.

View Article and Find Full Text PDF

Dye pollution from industrial effluents poses a major environmental threat due to the toxicity, mutagenicity, and carcinogenicity of synthetic dyes. Conventional treatment methods-physical, chemical, and biological-often suffer from limited efficiency, high operational costs, and secondary pollution. Carbon-based nanomaterials have emerged as promising alternatives, with carbon nanodots (CNDs) gaining attention for their unique physicochemical properties.

View Article and Find Full Text PDF

The limited activity and poor long-term stability of oxygen electrocatalysts remain major obstacles to the practical deployment of zinc-air batteries (ZABs). Herein, a heterostructure catalyst, FeNi-LDH@DACs, was constructed by anchoring ultrasmall FeNi layered double hydroxide (LDH) nanodots onto polyhedral FeNi dual-atomic catalysts (DACs), forming a "sesame-ball-like" architecture. This spatial arrangement enables interfacial coupling, where electron transfer from LDH to DACs modulates the d-band center of the FeNi atomic sites and adjusts the adsorption energies of oxygen intermediates.

View Article and Find Full Text PDF