98%
921
2 minutes
20
Objective: Recent evidence suggesting an important role of gut-derived inflammation in brain disorders has opened up new directions to explore the possible role of the gut-brain axis in neurodegenerative diseases. Given the prominence of dysbiosis and colonic dysfunction in patients with Parkinson's disease (PD), we propose that toll-like receptor 4 (TLR4)-mediated intestinal dysfunction could contribute to intestinal and central inflammation in PD-related neurodegeneration.
Design: To test this hypothesis we performed studies in both human tissue and a murine model of PD. Inflammation, immune activation and microbiota composition were measured in colonic samples from subjects with PD and healthy controls subjects and rotenone or vehicle-treated mice. To further assess the role of the TLR4 signalling in PD-induced neuroinflammation, we used TLR4-knockout (KO) mice in conjunction with oral rotenone administration to model PD.
Results: Patients with PD have intestinal barrier disruption, enhanced markers of microbial translocation and higher pro-inflammatory gene profiles in the colonic biopsy samples compared with controls. In this regard, we found increased expression of the bacterial endotoxin-specific ligand TLR4, CD3+ T cells, cytokine expression in colonic biopsies, dysbiosis characterised by a decrease abundance of SCFA-producing colonic bacteria in subjects with PD. Rotenone treatment in TLR4-KO mice revealed less intestinal inflammation, intestinal and motor dysfunction, neuroinflammation and neurodegeneration, relative to rotenone-treated wild-type animals despite the presence of dysbiotic microbiota in TLR4-KO mice.
Conclusion: Taken together, these studies suggest that TLR4-mediated inflammation plays an important role in intestinal and/or brain inflammation, which may be one of the key factors leading to neurodegeneration in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/gutjnl-2018-316844 | DOI Listing |
Am J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.
View Article and Find Full Text PDFBlood Adv
September 2025
Zhongnan Hospital of Wuhan University, Wuhan, China.
The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
Microglial cells are key mediators of ethanol-induced neuroinflammation through the release of proinflammatory cytokines and activation of Toll-like receptors. Recently, the signaling pathway initiated by the interaction of the neurotrophic factors pleiotrophin (PTN) and midkine (MK) with receptor-type protein tyrosine phosphatase β/ζ (RPTPβ/ζ) has emerged as a pharmacological target in ethanol-induced neuroinflammatory and neurodegenerative processes. However, the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFTransl Neurosci
January 2025
Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China.
Objectives: Excessive neuroinflammatory responses represent a key pathological mechanism in cerebral small vessel disease (CSVD). Dl-3--butylphthalide (NBP), a compound previously demonstrated to possess anti-inflammatory properties in ischemic stroke, was investigated for its potential therapeutic effects in a rodent model of CSVD. This study aimed to elucidate the neuroprotective mechanisms of NBP in CSVD pathogenesis.
View Article and Find Full Text PDF