Differing Roles of Hyaluronan Molecular Weight on Cancer Cell Behavior and Chemotherapy Resistance.

Cancers (Basel)

Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hyaluronan (HA), a glycosaminoglycan located in the extracellular matrix, is important in embryo development, inflammation, wound healing and cancer. There is an extensive body of research demonstrating the role of HA in all stages of cancer, from initiation to relapse and therapy resistance. HA interacts with multiple cell surface receptors, including CD44, receptor for hyaluronan mediated motility (RHAMM) and intracellular signaling pathways, including receptor tyrosine kinase pathways, to promote the survival and proliferation of cancer cells. Additionally, HA promotes the formation of cancer stem cell (CSC) populations, which are hypothesized to be responsible for the initiation of tumors and therapy resistance. Recent studies have identified that the molecular weight of HA plays differing roles on both normal and cancer cell behavior. This review explores the role of HA in cancer progression and therapy resistance and how its molecular weight is important in regulating CSC populations, epithelial to mesenchymal transition (EMT), ATP binding cassette (ABC) transporter expression and receptor tyrosine kinase pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316154PMC
http://dx.doi.org/10.3390/cancers10120482DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
therapy resistance
12
differing roles
8
cancer cell
8
cell behavior
8
receptor tyrosine
8
tyrosine kinase
8
kinase pathways
8
csc populations
8
cancer
7

Similar Publications

Bioinformatics analysis of a geneframeshift mutation in a patient with Dent disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.

Dent disease is a rare X-linked recessive inherited renal tubular disorder characterized by low molecular weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and other clinical features, and can lead to progressive renal failure. It is primarily caused by mutations in the gene. This article reports the case of a 10-year-old male patient of Chinese descent who was incidentally found to have asymptomatic proteinuria during a routine health examination.

View Article and Find Full Text PDF

The survey assessed tribological properties of the materials based on ultra-high-molecular-weight polyethylene for joint replacement liners by several major manufacturers. Being their crucial parameter, the mass wear rates were compared. Scanning electron microscopy was used to assess the metamorphosis of the materials surface after friction.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

This study involved the isolation of ten psychrophilic bacterial strains from cold water in Söğütlü village, Erzurum. Following isolation, the strains were characterized using molecular and conventional methods. On the basis of the results of Petri dish assays, Aeromonas salmonicida subsp.

View Article and Find Full Text PDF

Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.

View Article and Find Full Text PDF