Ovarian cancer is the most lethal gynecological cancer. Up to 75% of cases are high-grade serous ovarian cancer (HGSOC) that have high chemosensitivity to first-line platinum-based therapies. However, 75% of patients will become chemoresistant following relapse.
View Article and Find Full Text PDFThe effects of hyaluronan (HA) in cancer are widely studied; however, the role of different molecular weight HA is poorly understood. Identifying novel proteins regulated by different molecular weight HA may highlight novel therapeutic targets. Proteomics analysis was performed to identify novel proteins regulated by different molecular weight HA (27, 183 and 1000 kDa) in ES-2 ovarian cancer cells over-expressing Notch3 intra-cellular domain.
View Article and Find Full Text PDFCancer Metastasis Rev
January 2025
Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway.
View Article and Find Full Text PDFGenetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery.
View Article and Find Full Text PDFObjectives: Recent studies have identified expression of the non-functional P2X7 (nfP2X7) receptor on various malignant cells including ovarian cancer, but not on normal cells, which makes it a promising tumour-associated antigen candidate for chimeric antigen receptor (CAR)-T-cell immunotherapies. In this study, we assessed the cytotoxic effects of nfP2X7-CAR-T cells on ovarian cancer using and models.
Methods: We evaluated the effects of nfP2X7-CAR-T cells on ovarian cancer cell lines (SKOV-3, OVCAR3, OVCAR5), normal peritoneal cells (LP-9) and primary serous ovarian cancer cells derived from patient ascites using monolayer and 3D spheroid assays.
Although the pro-tumorigenic functions of hyaluronan (HA) are well documented there is limited information on the effects and targets of different molecular weight HA. Here, we investigated the effects of 27 kDa, 183 kDa and 1000 kDa HA on ES-2 ovarian cancer cells overexpressing the stem cell associated protein, Notch3. 1000 kDA HA promoted spheroid formation in ES-2 cells mixed with ES-2 overexpressing Notch3 (1:3).
View Article and Find Full Text PDFAquaporin (AQP) channels in endometrial cancer (EC) cells are of interest as pharmacological targets to reduce tumor progression. A panel of compounds, including AQP1 ion channel inhibitors (AqB011 and 5-(phenoxymethyl) furan-2-carbaldehyde, PMFC), were used to test the hypothesis that inhibition of key AQPs can limit the invasiveness of low- and high-grade EC cells. We evaluated the effects on transwell migration in EC cell lines (Ishikawa, MFE-280) and primary EC cells established from surgical tissues ( = 8).
View Article and Find Full Text PDFEighty percent of ovarian cancer patients initially respond to chemotherapy, but the majority eventually experience a relapse and die from the disease with acquired chemoresistance. In addition, 20% of patients do not respond to treatment at all, as their disease is intrinsically chemotherapy resistant. Data-independent acquisition nano-flow liquid chromatography-mass spectrometry (DIA LC-MS) identified the three protein markers: gelsolin (GSN), calmodulin (CALM1), and thioredoxin (TXN), to be elevated in high-grade serous ovarian cancer (HGSOC) tissues from patients that responded to chemotherapy compared to those who did not; the differential expression of the three protein markers was confirmed by immunohistochemistry.
View Article and Find Full Text PDFDisabled-2 (), a key adaptor protein in clathrin mediated endocytosis, is implicated in the regulation of key signalling pathways involved in homeostasis, cell positioning and epithelial to mesenchymal transition (EMT). It was initially identified as a tumour suppressor implicated in the initiation of ovarian cancer, but was subsequently linked to many other cancer types. contains key functional domains which allow it to negatively regulate key signalling pathways including the mitogen activated protein kinase (MAPK), wingless/integrated (Wnt) and transforming growth factor beta (TGFβ) pathways.
View Article and Find Full Text PDFBackground: Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics.
View Article and Find Full Text PDFChemoresistance remains the major barrier to effective ovarian cancer treatment. The molecular features and associated biological functions of this phenotype remain poorly understood. We developed carboplatin-resistant cell line models using OVCAR5 and CaOV3 cell lines with the aim of identifying chemoresistance-specific molecular features.
View Article and Find Full Text PDF: This study investigated the ATP binding cassette (ABC) transporter (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) expression in high grade serous ovarian cancer (HGSOC) tissues, cell lines and primary cells to determine their potential relationship with acquired chemotherapy resistance and patient outcome. : ABC transporter mRNA and protein expression (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) was assessed in publicly available datasets and in a tissue microarray (TMA) cohort of HGSOC at diagnosis, respectively. ABC transporter mRNA expression was also assessed in chemosensitive ovarian cancer cell lines (OVCAR-5 and CaOV3) versus matching cell lines with acquired carboplatin resistance and in primary HGSOC cells from patients with chemosensitive disease at diagnosis ( = 10) as well as patients with acquired chemotherapy resistance at relapse ( = 6).
View Article and Find Full Text PDFLocal activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2021
Ovarian cancer (OC) is commonly diagnosed at advanced stage when prognosis is poor. Consequently, there is an urgent clinical need to identify novel biomarkers for early detection to improve survival. We examined the diagnostic value of the calcium phospholipid binding protein annexin A2 (ANXA2), which plays an important role in OC metastasis.
View Article and Find Full Text PDFCancers (Basel)
December 2020
Ovarian cancer (OC) is one of the most lethal gynecological malignancies, yet molecular mechanisms underlying its origin and progression remain poorly understood. With increasing reports of piRNA pathway deregulation in various cancers, we aimed to better understand its role in OC through a comprehensive analysis of key genes: , , , , , , and mutants of () and (). High-throughput qRT-PCR ( = 45) and CSIOVDB ( = 3431) showed differential gene expression when comparing benign ovarian tumors, low grade OC and high grade serous OC (HGSOC).
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH) and luteinising hormone (LH) play important roles in regulating cell growth and proliferation in the ovary. However, few studies have explored the expression of FSH and LH receptors (FSHR and LHCGR) in ovarian cancer, and their functional roles in cancer progression remain inconclusive. This study investigated the potential impact of both mRNA (, ) and protein (FSHR, LHCGR) expression on ovarian cancer progression using publicly available online databases, qRT-PCR (high grade serous ovarian cancers, HGSOC, = 29 and benign ovarian tumors, = 17) and immunohistochemistry (HGSOC, = 144).
View Article and Find Full Text PDFOvarian cancer is the most lethal gynecologic malignancy. Early detection would improve survival, but an effective diagnostic test does not exist. Novel biomarkers for early ovarian cancer diagnosis are therefore warranted.
View Article and Find Full Text PDFIntroduction: Cyclin-dependent kinases 4 and 6 (CDK4/6) are fundamental drivers of the cell cycle and are involved in the initiation and progression of various cancers. Deregulation of the CDK4/6-cyclin D-retinoblastoma (Rb) pathway is common in ovarian cancer and is associated with an aggressive phenotype and poor prognosis. Patients with advanced ovarian cancer whose tumor demonstrates Rb-positivity, a low expression of p16 and overexpression of cyclin D1 are most likely to benefit from CDK4/6 inhibition.
View Article and Find Full Text PDFMalignant ascites is a fluid, which builds up in the abdomen and contains cancer cells in the form of single cells or multicellular clusters called spheroids. Malignant ascites has been observed in patients suffering from ovarian, cervical, gastric, colorectal, pancreatic, endometrial, or primary liver cancer. The spheroids are believed to play a major role in chemo resistance and metastasis of the cancer.
View Article and Find Full Text PDFWe have recently shown that the extracellular matrix molecule hyaluronan (HA) plays a role in the development of ovarian cancer chemoresistance. This present study determined if HA production is increased in chemotherapy-resistant ovarian cancers and if the HA inhibitor 4-methylubelliferone (4-MU) can overcome chemoresistance to the chemotherapeutic drug carboplatin (CBP) and inhibit spheroid formation and the expression of cancer stem cell (CSC) markers. We additionally assessed whether 4-MU could inhibit in vivo invasion of chemoresistant primary ovarian cancer cells in the chicken embryo chorioallantoic membrane (CAM) assay.
View Article and Find Full Text PDFColorectal cancer (CRC) remains one of the most lethal human malignancies, and pursuit of new therapeutic targets for treatment has been a major research focus. Cyclin-dependent kinase 9 (CDK9), which plays a crucial role in transcription, has emerged as a target for cancer treatment. CDKI-73, one of the most potent and pharmacologically superior CDK9 inhibitors, has demonstrated excellent anti-tumour efficacy against several types of cancers.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2019
Background: Annexin A2 is increased in serous ovarian cancer and plays an essential role in ovarian cancer invasion and metastasis. In combination with S100A10, annexin A2 plays an important role in the plasminogen activator system regulating plasmin production. The aim of this study was to investigate the potential utility of all-trans retinoid acid (ATRA), an inhibitor of the annexin A2-S100A10 signalling pathway, as a new therapeutic against serous ovarian cancer.
View Article and Find Full Text PDFS100A10, which is also known as p11, is located in the plasma membrane and forms a heterotetramer with annexin A2. The heterotetramer, comprising of two subunits of annexin A2 and S100A10, activates the plasminogen activation pathway, which is involved in cellular repair of normal tissues. Increased expression of annexin A2 and S100A10 in cancer cells leads to increased levels of plasmin-which promotes the degradation of the extracellular matrix-increased angiogenesis, and the invasion of the surrounding organs.
View Article and Find Full Text PDFCancers (Basel)
December 2018
Hyaluronan (HA), a glycosaminoglycan located in the extracellular matrix, is important in embryo development, inflammation, wound healing and cancer. There is an extensive body of research demonstrating the role of HA in all stages of cancer, from initiation to relapse and therapy resistance. HA interacts with multiple cell surface receptors, including CD44, receptor for hyaluronan mediated motility (RHAMM) and intracellular signaling pathways, including receptor tyrosine kinase pathways, to promote the survival and proliferation of cancer cells.
View Article and Find Full Text PDF