Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lesions of the central nucleus of the third cranial nerve in midbrain leads to bilateral ptosis. We present a case of a 14 year old boy, who was found to have B/L non-correctable ptosis and medial rectus palsy. There was a ring enhancing lesion in the midbrain in contrast MRI which resolved with treatment. The case exemplifies that bilateral ptosis results from the central nucleus involvement of third nerve which has bilateral innervation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261474PMC
http://dx.doi.org/10.1080/01658107.2017.1404113DOI Listing

Publication Analysis

Top Keywords

central nucleus
8
bilateral ptosis
8
eye opener
4
opener finding
4
finding targeting
4
targeting midbrain
4
midbrain lesion
4
lesion lesions
4
lesions central
4
nucleus third
4

Similar Publications

Multimessenger Detection of Black Hole Binaries in Dark Matter Spikes.

Phys Rev Lett

August 2025

The Johns Hopkins University, William H. Miller III Department of Physics and Astronomy, Baltimore, Maryland 21218, USA.

We investigate the inspiral of a high mass-ratio black hole binary located in the nucleus of a galaxy, where the primary central black hole is surrounded by a dense dark matter spike formed through accretion during the black hole growth phase. Within this spike, dark matter undergoes strong self-annihilation, producing a compact source of γ-ray radiation that is highly sensitive to spike density, while the binary emits gravitational waves at frequencies detectable by LISA. As the inspiraling binary interacts with the surrounding dark matter particles, it alters the density of the spike, thereby influencing the γ-ray flux from dark matter annihilation.

View Article and Find Full Text PDF

The 247-keV state in ^{54}Sc, populated in the β decay of ^{54}Ca, is reported here as a nanosecond isomer with a half-life of 26.0(22) ns. The state is interpreted as the 1^{+} member of the πf_{7/2}⊗νf_{5/2} spin-coupled multiplet, which decays to the 3^{+},πf_{7/2}⊗νp_{1/2} ground state.

View Article and Find Full Text PDF

Adaptation to Preceding Acute Psychological Stress is Associated With Subsequent Stress Coping Levels via Corticoid Receptors.

Alpha Psychiatry

August 2025

Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, 963-8611 Fukushima, Japan.

Objective: Hypothalamic‒pituitary‒adrenal axis response is essential for coping with acute stressors, while maladaptive stress coping may increase the risk of major depressive disorder. We previously demonstrated that behavioral patterns induced by prior psychological stress predict coping levels in response to future stressors. This study investigated whether activating corticotropin-releasing hormone (CRH) and corticosteroid receptors mediates psychological stress-induced coping behavior.

View Article and Find Full Text PDF

Objectives: To investigate the role of a neural pathway from oxytocin (OXT) neurons in the hypothalamic paraventricular nucleus (PVN) to γ-aminobutyric acid (GABA) neurons in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.

Methods: A chronic migraine model was established by intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: Wild-type C57BL/6J mice were divided into 4 groups (=6 in each), receiving single or repeated injection of NTG or saline, respectively.

View Article and Find Full Text PDF

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF