98%
921
2 minutes
20
CD11b+ myeloid subpopulations, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), play crucial roles in the suppression of T-cell-mediated anti-tumor immunity. Regulation of these cell types is a primary goal for achieving efficient cancer immunotherapy. We found that metformin (Met) induces CD11b+-cell-mediated growth inhibition of a K7M2neo osteosarcoma independent of T cells, as growth inhibition of K7M2neo was still observed in wild-type (WT) mice depleted of T cells by antibodies and in SCID; this contrasted with the effect of Met on Meth A fibrosarcoma, which was entirely T-cell-dependent. Moreover, the inhibitory effect seen in SCID was abrogated by anti-CD11b antibody injection. PMN-MDSCs were significantly reduced in both spleens and tumors following Met treatment. In TAMs, production of IL-12 and TNF-α, but not IL-10, became apparent, and elevation of MHC class II with reduction of CD206 was observed, indicating a shift from an M2- to M1-like phenotype via Met administration. Metabolically, Met treatment decreased basal respiration and the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio of CD11b+ cells in tumors, but not in the spleen. In addition, decreased reactive oxygen species (ROS) production and proton leakage in MDSCs and TAMs were consistently observed in tumors. Uptake of both 2-deoxy-2-d-glucose (2-NBDG) and BODIPY® decreased in MDSCs, but only BODIPY® incorporation was decreased in TAMs. Overall, our results suggest that Met redirects the metabolism of CD11b+ cells to lower oxidative phosphorylation (OXPHOS) while elevating glycolysis, thereby pushing the microenvironment to a state that inhibits the growth of certain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440441 | PMC |
http://dx.doi.org/10.1093/intimm/dxy079 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFInt Microbiol
September 2025
Department of Microbiology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Dr. B. R. Ambedkar Centre for Biomedical Research North Campus , University of Delhi, 110007, Delhi, India.
Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.
View Article and Find Full Text PDFBiomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDF