Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human pluripotent stem cells have the potential assist in the identification of genes involved in mammalian development. The human placenta is considered a repository of stem cells, termed placenta‑derived multipotent cells (PDMCs), which are able to differentiate into cells with an osteoblastic phenotype. This plasticity of PDMCs maybe applied clinically to the understanding of osteogenesis and osteoporosis. In the presentstudy, osteoblasts were generated by culturing PDMCs in osteogenic medium. Reverse transcription quantitative polymerase chain reactionand the degree of osteoblast calcification were used to evaluate the efficacy of osteogenesis. The results suggestedthat the expression of mothers against decapentaplegic homolog 3 (SMAD3) increased in the initial stages of osteogenic differentiation but decreased in the later stages. However, osteogenesis was inhibitedwhen the PDMCs overexpressed SMAD3 throughout the differentiation period. In addition, the rate of osteogenic differentiation was decreased when SMAD3 signaling was impaired. In conclusion, SMAD3 serves an important role in osteoblast differentiation and bone formation in a time‑dependent manner. The data from the present study indicate that arapid increase in SMAD3 expression is crucial for osteogenesis and suggest a role for PDMCs in the treatment of patients with osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2018.4001DOI Listing

Publication Analysis

Top Keywords

stem cells
8
osteogenic differentiation
8
differentiation decreased
8
smad3
6
pdmcs
6
differentiation
5
dynamic expression
4
expression smad3
4
smad3 critical
4
critical in osteoblast
4

Similar Publications

CRISPR/Cas9-mediated editing of COQ4 in induced pluripotent stem cells: A model for investigating COQ4-associated human coenzyme Q deficiency.

Stem Cell Res

September 2025

Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:

Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.

View Article and Find Full Text PDF