98%
921
2 minutes
20
The kinetics and mechanism of ferrate(iv), (v) and (vi) transformations in water and in polar organic solvents (namely ethanol and tetrahydrofuran) have been investigated by the method of 57Fe Mössbauer spectroscopy of frozen solutions. Ethanol with a very limited amount of water under an inert atmosphere, significantly slows down the transformation reactions of ferrates(iv and v) and provides direct proof of the existence of intermediate states. Simultaneously, ethanol is oxidized to caboxylates in the close vicinity of the surface of ferrate crystallites as proven by X-ray photoelectron spectroscopy. On the contrary, any transformation of ferrate(vi) in pure ethanol (with a very limited amount of water) was not observed. Mössbauer spectroscopy of frozen solutions enabled us to experimentally identify and quantify intermediates of ferrate(iv) and ferrate(v) transformations for the first time. Sodium ferrate(iv) in its tetrahedral form, Na4FeO4, undergoes a two-step charge disproportionation to Fe(iii) and Fe(vi) via a Fe(v) intermediate without any evolution of oxygen in polar protic and aprotic solvents, specifically 2Fe(iv) → Fe(iii) + Fe(v), and Fe(iv) + Fe(v) → Fe(iii) + Fe(vi), i.e. in sum 3Fe(iv) → 2Fe(iii) + Fe(vi). Ferrate(v) (K3FeO4) transforms to Fe(iii) and Fe(vi) without any indication of the Fe(iv) intermediate within the detection limit of the method. In addition to a charge disproportionation reaction proceeding in polar liquids, 3Fe(v) → Fe(iii) + 2Fe(vi), a competitive reduction of Fe(v) directly to Fe(iii) accompanied by oxygen evolution takes place in water. Oxygen evolution was also measured for ferrate(iv and vi) transformations in water, but to a higher and a smaller extent compared to ferrate(v), respectively. The thermodynamics of the suggested ferrate(iv) and ferrate(v) transformation pathways was examined by DFT calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp05952g | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.
The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Environ Sci Pollut Res Int
September 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.
View Article and Find Full Text PDFPediatr Res
September 2025
Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
Background: Children with congenital cytomegalovirus (cCMV) have a wide spectrum of possible neurodevelopmental outcomes.
Objectives: To describe neurodevelopmental (ND) Phenotypes of children with cCMV based on medical, developmental, and behavioral outcomes in childhood, and examine whether birth characteristics were associated with ND Phenotype.
Methods: Caregivers of children with cCMV (N = 242, child aged 12 months to <11 years) completed survey instruments reporting on the child's birth characteristics, reasons for cCMV testing, and present medical, developmental, and behavioral status.